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INTRODUCTION

Sometimes we think that math is multiplication and division, addition and subtraction.
It is equations and probability and ratios and fractions. As we get older, it is algebra

and trigonometry. Math is all of those things, but it is so much more. And most of what
makes up math is just plain fun and interesting. This book takes a walk through history,
our environment, math thinking, and logic to provide explorations and activities that
show how much math there is in the everyday things around us and how much fun it can
be to search for the math in things.

The activities in this book offer great ways to stimulate your math thinking. For most
people, while some kinds of math thinking and activities are easy, others are difficult.
This is true for almost everybody. It simply depends upon how your brain works.
Sometimes what is hard or easy depends on when you were born in the history of the
world. Nobody would say the ancient Egyptians were not a smart, advanced people, but
guess what? They didn’t know how to multiply like we do because they didn’t really need
to and the method wasn’t developed yet. Some of the activities in this book will help you
see how math thinking has developed through the history of all people. Today, we know
a lot of things by third grade that some people in history never knew, and, yet, they built
the great pyramids.

Keep all of this in mind as you explore the activities in this book. You might think some
of the activities in this book are really easy. Some of them will be easy for you to solve,
while others, such as certain kinds of puzzles, may be hard for you but easy for your
friend. This is not a book of right and wrong answers. It’s a book to give you ways to
think about numbers and shapes and surfaces in a new way. Above all, it’s a book to have
fun with while you are learning about new ideas, relationships, and concepts.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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HOW TO USE THIS BOOK

This book includes thirty-five sets of activities, an answer key, a glossary, and a
bibliography. The activities provide explorations in areas of math thinking such as

geometry, topology, interesting properties of numbers, logic, and probability. The
activities will get you thinking about geometry, symmetry, topology, math history,
number properties, probability, ratios, puzzles, and games.

Each activity is described on two (and sometimes more) pages. The first page provides
some background and introduction to the particular activity. The pages that follow give
you ideas and opportunities for exploring the subject. In the “Your Turn” section, you
will have a chance to investigate the math subject or idea introduced on the first page. In
the “And Another Thing” section, you will find additional ways to explore the subject or
ideas for doing different, but related, math investigations.

The book’s additional features are an answer key, glossary, and bibliography. The answer
key offers answers for many of the questions and puzzles. Some questions simply
challenge your thinking. They may have no right or wrong answers or more than one
possible answer. Others may have different answers depending upon the approach you
take. A quick answer is not the point; the thinking itself is the point. Those questions in
the text preceded by a number in a circle ① are answered in the answer key. The glossary
offers a way to check your understanding of a term in an activity. The bibliography
includes many books that provide wonderful math ideas and curiosities that students of
all ages will enjoy. That’s because math can be just plain fun and interesting when we
stop thinking about it as a test to be survived. The Internet is also a great source of
entertaining and stimulating math inquiries.

Flip through this book. Stop to read when something interests you. Pull out a piece of
graph paper and see what wonders will unfold for you. Above all, enjoy!

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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A NOTE TO TEACHERS AND PARENTS

The activities in this book vary greatly in complexity. Some, such as “How the Egyptians
Multiplied,” are mathematically quite simple but are interesting to help young people

understand the development of math thinking through the ages. Others, such as “The
Four-color Map Problem,” are very complicated mathematically, but young people can
enjoy exploring the concept or “problem” and some of the initial thinking that goes into
solving complicated math problems. Still others, such as the tangram activity, are easy
for some and difficult for others, regardless of age. It’s a matter of how our individual
brains work. Playing with these puzzles, whether initially easy or difficult, builds abilities
and skills.

The activities in this book are written so that they can be enjoyed by young people or
presented by an adult who introduces the activity. They are organized so that the
activities build in complexity as you progress through the book; however, everyone’s brain
works differently and some activities that are easy for one person may be more
challenging to another. Each activity is presented on two (or more) pages. A teacher or
adult can use the material on the first page of any activity to help present the activity and
then provide the young person with the following pages to do an actual hands-on
exploration. Alternatively, provide the young person all the pages of an activity to read
and investigate. If an activity sparks a particular interest, encourage further exploration.
There are many excellent math activity Web sites available, which include particular
topics, such as those in this book. You can find these by using keywords in one of the
familiar search engines.

Another wonderful use for the activities in this book is as a jumping-off place for group,
family, or even community explorations. Teachers might use the activities in this book
for special projects, extra-credit assignments and student presentations. Families might
use the activities for family fun nights, youth group activities, home schooling, or even
parties. Nothing gets people involved in an activity more quickly than exercising their
brain cells over something they think should be easy, only to find that it isn’t as easy as
they thought.

Remember that the best use of these activities is to provide a stimulating and entertaining
way to foster mathematical thinking and to create and develop a pleasure in the process
of thinking, creating, and puzzling things out. When it’s all said and done, we learn more
that we remember longer when we’re having fun at the same time.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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FACTORING, GEOMETRIC SHAPES,
AND PRIME NUMBERS

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1
The Greeks thought of numbers in groups and gave them geometric names, such as

triangle numbers, square numbers, and pentagonal numbers. Positive whole numbers can
be analyzed in a geometric way all their own to find out whether or not they are prime
and to find out the factors of a number.

What is a prime number? It is a whole number greater than 1 that has only itself and 1 as
factors. Prime numbers include 1, 2, 3, 5, and 7.

What is a factor? Factors are numbers that can be divided into a whole number with no
remainder. For example, the factors for the number 8 are 1, 2, 4, and 8: 1 x 8 = 8 and
2 x 4 = 8. The number 8 has four factors, so it is not a prime number.

To find out if a number is prime or not, when you look at it, ask how many kinds of
rectangles you can make from it. When you figure this out, you will know whether the
number is prime and what its factors are.

For example, look at the numbers 5 and 12. How do you find out if either is a prime
number? First, draw a rectangle made of squares for the number 5:

Now look at rectangles for the number 12:

1 What are the factors for each number?

2 Is either number prime?
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2       FACTORING, GEOMETRIC SHAPES, AND PRIME NUMBERS

YOUR TURN

Analyze a non-prime number of your choice in terms of the kinds of rectangles it makes.
When you have drawn your information here, turn your factoring information into a

chart. It is easy to see how factoring relates to multiplication when you chart a non-prime
number in this way.

After you have done your factor rectangle analysis, turn your number into its prime
factorization—that is, write your number as a product of its primes only. For example,
the factors of the number 12 are 1, 12, 2, 6, 3, and 4. Forget about 1 because anything
times 1 is the number itself. How would you show 12 using only its primes? You would
write it as 2 x 2 x 3. You would write 24 as 2 x 2 x 2 x 3.

AND ANOTHER THING

Prime numbers have some interesting characteristics. For example, 2 is the only even
prime number, because all other even numbers have 2 as a factor. Also, 5 is the only

prime number that ends in 5 because all other numbers that end in 5 can be divided
evenly by 5. Here’s another interesting characteristic: If you add 1 or subtract 1 from any
prime number over 3, the resulting sum or remainder will be divisible by 6. Try it.

Take the prime number 19. If you add 1, you get 20, which is not divisible by 6. But if
you subtract one, you get 18, which is divisible by 6. Can you prove this rule wrong?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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3

THE SHAPE OF NUMBERS —
IT’S GREEK TO ME

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

To begin, look at the very first dot in the lower left corner. Think of the first dot as
number 1, the first triangle. Now, look at the two dots in the next diagonal row to the
right. These two dots and the first dot make a triangle: 1 + 2 = 3. The next triangle has
6 dots—3 from the prior triangle plus 3 dots on the line of dots you add: 3 + 3 = 6.

The number of dots in each succeeding triangle is 10, 15, 21, 28, and 36. There is a
pattern here. Can you figure out what the pattern is?

Now you can see why the Greeks named certain numbers triangle numbers: These
numbers can be shown as dots in a triangular pattern. How might this relate to their
reasoning for naming certain numbers square numbers?

Triangle numbers? Square numbers? What in the world do these terms mean? Ancient
Greek math geniuses found it fun to play with numbers and their relationships. They

were mostly interested in geometry, the math of the shape of things. That’s why when
they looked at how numbers related to each other, they toyed with arranging them in
shapes. Can you guess what they found?

2



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Y e

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

4       THE SHAPE OF NUMBERS—IT’S GREEK TO ME

YOUR TURN

1 Can you think of a way in which triangle numbers relate to square numbers?
What happens when you add any triangle number to the next higher triangle
number?

1 + 3 = ?

10 + 15 = ?

2 When you look at numbers, you can often see ways in which one group of
numbers relates to another. You have found a way in which triangle numbers
relate to square numbers. Can you think of a way in which odd numbers
relate to square numbers? Perhaps this drawing will help.

1 =

1 + 3 =

1 + 3 + 5 =

Both the smallest triangle and the smallest square numbers are 1. We saw that there
was a pattern to how the triangle numbers grew. The first six square numbers are

1, 4, 9, 16, 25, and 36. What is the pattern to making these numbers?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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 THE SHAPE OF NUMBERS—IT’S GREEK TO ME       5

AND ANOTHER THING

Square numbers have many cousins. You now know how square numbers relate to both
odd and triangle numbers. Let’s figure out how they relate to square roots and cubic

numbers.

The square root of any number is another number that, when multiplied by itself, equals
the original number—for example, 3 is the square root of 9 because 3 x 3 or 3 squared
equals 9. It is pretty clear how square numbers relate to square roots. Look at the square
numbers on the partial multiplication table below to see how square numbers relate to
square roots.

3 Now, what is a cubic number? The ancient Greeks thought about cubic numbers,
too. Look at the pictures below. How do cubic numbers relate to square numbers
and square roots?

The cubic number 2 The cubic number 9

2 x 2 x 2 = ? 3 x 3 x 3 = ?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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6

ERATOSTHENES’
PRIME NUMBER SIEVE

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

3
As we learn more about math, we find out that numbers are not simply whole numbers, odd

and even numbers, or even positive and negative numbers. They can be many things.

There are real numbers.

There are numbers that are integers.

There are rational and irrational numbers.

There are prime numbers.

The list seems almost endless. Have you heard about some of these kinds of numbers?
Let’s find out more about the last ones—the prime numbers.

Eratosthenes was a Greek mathematician and philosopher who lived from around
276 B.C. to 194 B.C. He had a fascination with prime numbers. What is a prime number?
A prime number is a whole number greater than 1 that has only itself and 1 as factors.
A factor is a number that can be divided into a whole number with no remainder.
For example, 2 is a factor of 4, because 2 can be divided evenly into 4 with no remainder.

Eratosthenes figured out a method of finding all the prime numbers up to a given
number such as 25 or 100 or more. It is called the prime number sieve. Here’s how you
make your own prime number sieve:

� First, write out your numbers in a neat way, such as 10 rows of 10 numbers to
100 or 5 rows of 5 numbers to 25.

� Next, cross out 1 because it is not a prime number. Why not? Because the
mathematicians say so is one answer. What answer can you think of?

� Now, circle 2 because it has no other factors but itself and 1. After the number 2,
cross out every number that 2 goes into evenly.

� Look at 3. Is it a prime number? Yes. Circle it and cross out every number into
which you can divide 3 without a remainder.

� Continue this process until all the numbers are either circled or crossed out.
The circled numbers are your prime numbers. What number do you circle next?
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 ERATOSTHENES’ PRIME NUMBER SIEVE       7

YOUR TURN

Here is how the Eratosthenes’ sieve works on numbers below 25.

How many prime numbers are there in the counting numbers below 25? Now try to
work Eratosthenes’ sieve on numbers 1 through 100.

1 List all the prime numbers you found between 1 and 100.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Make art by the numbers. Using the number layout above for numbers 1 to 100,
investigate the patterns you make when you put different-colored dots on all even

numbers, all multiples of 3, all multiples of 4, and/or all multiples of 5.
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8

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

4
There’s just no getting away from mathematics. It’s all around us—just step outside and

take a look. Number sequences can be found in the way plants grow. Look at their petals,
leaves, and seed structures. (For activities on finding Fibonacci numbers in nature, see
“A Fibonacci Search,” page 109.) Geometric shapes abound in the spirals inside univalve
seashells, the elliptical orbits of comets, planets, and electrons; the spherical shape of the
Earth, and the hexagons of a beehive. Oops, stop right there. Hexagons are everywhere.

Why, you may ask, are there so many hexagonal shapes and designs around us? A
hexagon is a six-sided polygon. Like the square and the equilateral triangle, each of its
sides is the same length and it can fit right next to itself over and over again leaving no
gaps or spaces.

Interestingly, though, when you compare a square, an equilateral triangle, and a hexagon,
all of which have the same area, it is the hexagon that takes the smallest perimeter to
enclose that area. That makes the hexagon a very practical shape in nature. Insects that
create honeycomb-shaped living structures, such as wasps and bees, can use less building
material and energy to make their homes using this shape. Snowflakes are also hexagonal
in design. Although it is said that no two snowflakes are alike, they all have six points.
Might there be a structural reason that nature decided on the six points?

A HEXAGON HERE,
A HEXAGON THERE
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 A HEXAGON HERE, A HEXAGON THERE       9

YOUR TURN

Searching for certain shapes in your environment can bring surprising and interesting
results. First, take a look at the natural world around you. Look at plants for hexagonal

leaf, seed, and petal patterns. Keep track of your findings. Hexagons are not the only
shapes honored in nature. There are many pentagonal structures and designs as well as
designs in threes and fours.

To broaden your shape search, look at specimens and pictures of sea creatures. What do
you find? Look at the patterns found in land and air creatures as well.

What do your results show? You might choose to graph your results.

Now survey the human-made structures around you. What do you see? Do hexagonal
patterns dominate or does some other geometric design appear to be more common?
Graph your survey results. Does your survey of human-made objects bring different
results from those seen in nature?

AND ANOTHER THING

Let your hair down and blow some bubbles. Better yet, whip up some foam with bubble
solution. Press the foam under a magnifying glass or other firm, clear substance. How

do the bubbles join at the corners?

1 When joined in the foam, what polygonal shape do bubbles take on?

OBJECT TRIANGULAR QUADRILATERAL PENTAGONAL HEXAGONAL

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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BONING UP ON RATIOS
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5
1
2

The bones in our bodies offer an interesting subject for exploring the relationship
between things. Specifically, we can use bones to look at ratios or the relationship

between two like numbers. You can write ratios with a colon, as in 1:2; as a fraction,
as in     ; or as a division problem, as in 1 divided by 2.

Ratios are a way of comparing two things. For example, how would you describe the
relationship between the number of yolks in a dozen eggs to the number of whites in a
dozen eggs?

How many yolks are there? 12
How many whites are there? 12

You might say then that for every 12 yolks, there are 12 whites. Said more simply, there is
a 1 to 1 or 1:1 ratio of yolks to whites in a dozen eggs. This is easy to see if we write the
numbers as fractions.

12 yolks reduces to 1 or 1 to 1 or 1:1
12 whites 1

Let’s use the bones in our bodies to play the ratio game. How many bones do we have
and where are they? Here’s a description of many of the 206 bones in the adult body.
Babies are born with nearly 350 bones, many of which fuse as we grow.

IN THE SKULL
2 nasal
1 lacrimal
1 occipital
1 sphenoid
2 temporal
1 frontal
1 maxilla
1 mandible
2 zygomatic

IN THE EAR, EACH
3 bones

IN THE FOOT, EACH
7 ankle
5 instep

14 phalanges (toes)

IN THE HAND, EACH
8 wrist
5 palm

14 phalanges (fingers)

IN THE BACK AND NECK
4 coccyx
7 cervical

12 thoracic
5 lumbar
5 sacrum

SHOULDER/GIRDLE
2 clavicles
2 scapula

IN THE LEG, EACH
1 upper, 2 lower

IN THE ARM, EACH
1 upper, 2 lowerRIBS (12 PAIRS)

24 total
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 BONING UP ON RATIOS       11

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

YOUR TURN

Use the numbers of bones listed on page 10 to come up with answers to these ratio questions.

1 What is the ratio of upper arm bones to lower arm bones? ___________

2 What is the ratio of finger phalanges to toe phalanges? (Look at the egg example
on the prior page. How do you answer this question using the smallest numbers
possible?) ___________

3 What is the ratio of ankle bones to toe bones? ___________

4 If you compare the number of nasal bones (2) to the total number of skull bones
(12), you get a ratio of 2:12. Can you write this ratio with smaller numbers to
create another equal ratio? ___________

A proportion is a statement that shows equality between two ratios. 2:12 is the same as
1:6. To write a proportion, you use double colons like this: 2:12 :: 1:6.

Let’s find some more bone ratios.

5 What is the ratio of ankle and instep bones to toe bones? ___________

6 What is the ratio of lumbar vertebrae to sacrum vertebrae? ___________

7 A baby is born with about 350 bones some of which fuse as the baby grows. An adult
has 206 bones. What is the ratio of adult bones to bones in a baby? ___________

8 If you round the number of baby bones to the nearest fifty, what is the ratio of
adult bones to bones in a baby? ___________

9 In making a comparison between adult and baby bones, what is the most useful
ratio for making a quick comparison of the difference? ___________

Make up three ratio problems of your own.

AND ANOTHER THING

Make up your own “bone” math problems for friends to solve. Starting with the skull,
make up two problems each about skull bones, arm and leg bones, back bones, hand

and feet bones, and rib and ear bones. Your problems can compare bone groups. Write
some ratio, averaging, division, and multiplication problems. Try to write some problems
with an unknown variable to solve.
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12

IS SYMMETRY
JUST SYMMETRY?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

6
By the time you were in second grade, you had learned what symmetry is. It’s found in

the shape of an insect—that is, if you draw an imaginary vertical line down the middle
of a bug, the two sides will mirror each other.

This mirror-image symmetry is called reflective symmetry. If you put a mirror on that line
down the middle of the bug, the whole creature will appear and both sides of the bug will
look exactly the same.

Another kind of symmetry is rotational symmetry. You can find this type of symmetry in a
figure by rotating it or turning it on an axis. If, for example, at 60, 90, or 180 degrees,
the first shape matches the second shape, the design has rotational symmetry. Look at the
picture on the left. Rotate the picture 90 degrees and the picture matches up with itself.
It has rotational symmetry. Is the same true for the diamond and the flower? How many
degrees do you need to rotate them to find out?
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 IS SYMMETRY JUST SYMMETRY?       13

We find still another kind of symmetry in the footsteps we take. If you hop on both feet,
as in the diagram on the left, you can move the prints on either side of the dotted line up
or down and they retain their symmetry. Clearly, the feet have reflective symmetry, but
they have another kind of symmetry as well. When you move the feet up or down on
either side of the line, they match up again. So this picture also demonstrates something
called translational symmetry.

If you walk normally on both feet, your footprints are not reflective as they were when
you hopped, but they are glide-reflective—that is, you can move the prints up or down
in a vertical line and find a reflective position.
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14      IS SYMMETRY JUST SYMMETRY?

YOUR TURN

Train your eye to find the different types of symmetrical images around you. Do a
symmetry survey of your environment.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Create three rotational symmetrical designs using first an equilateral triangle as your
starting design, then a square, and finally a regular hexagon.

1 How many degrees must you rotate each design to find a symmetrical position?
Explore rotational symmetry using pentagons, octagons or other polygonal shapes.

REFLECTIVE ROTATIONAL

TRANSLATIONAL GLIDE-REFLECTIVE
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15

THE MAGIC LINE—
A MATTER OF SYMMETRY?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

7
A  magic square is a group of numbers arranged in a square so that the sum of any row,

column, or diagonal is the same. (See “Magic Square in the Making,” page 69.) In the
early 1900s, architect Claude Bragdon found that by connecting the numbers in a magic
square consecutively beginning with the smallest number, he could create a symmetrical
pattern. The line made by connecting these numbers is called a magic line. (Actually, in
mathematical terms it is not a line, but a series of line segments and endpoints.) Bragdon
found that these designs were very appealing to the eye, so he incorporated them into the
decoration of the buildings he designed.

Look at the line created by the lo shu magic square from China. The lo shu magic square
is considered one of the earliest examples of a magic square.

To draw a magic line, first find the midpoint of each square in your magic square that
contains a number. (If the midpoints are not obvious, you can find them in each square
by drawing the diagonals between opposing corners.)

Then, working midpoint to midpoint, draw a line that begins in the square of the smallest
number in the magic square and connect the line consecutively to each larger number.

What kind of design does the magic line make? Is it symmetrical? If so, how?
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16       THE MAGIC LINE—A MATTER OF SYMMETRY?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Create a magic line from each of the magic squares below. To make the most perfect
magic line, use the point in each square as the beginning and ending of each

consecutive line segment. The magic square on the left is from an ancient Tibetan seal.
The magic square on the right is from an engraving called Melancholia I made by artist
Albrecht Durer in 1514.

1 What kind of symmetry do you see in these magic lines? How many degrees do
you need to rotate the lines to find the symmetry?

Benjamin Franklin was also fascinated by magic squares. Here is a large one he created.
Draw the magic line of this square.

2 What kind of symmetry do you see?
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 THE MAGIC LINE—A MATTER OF SYMMETRY?       17

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Look at one of the magic line designs you made. Color alternating spaces with black and
another color of your choice. Can you see how Claude Bragdon might have found

such a design useful in ornamenting his buildings?
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NEEDLE AND THREAD
GEOMETRY

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

8
The art of quilting dates back centuries. Thrifty pioneer women turned scraps of rag and

old neckties into useful coverlets and pillows that were often works of art in their own
right. In the process of all this practical, yet creative, energy these women explored the
dynamics of the relationship between geometric shapes to create visual effects that have
held their appeal for generations. They pieced together congruent shapes or entirely
different shapes in unique ways to give rise to formation after formation, design after design.
Often the geometry of the quilt was a matter of pattern within pattern within pattern.

Probably the most basic shape to the creation of interesting quilt design is the triangle—
and a right triangle, at that. This is because it is this triangle that is located within the
basic quilt shape, the square. In addition to triangles, shapes such as squares and
parallelograms such as diamonds, rectangles, and hexagons have found their way into the
quilt square, or block, as it is sometimes called.

One very popular and durable design
that shows us how shapes exist within
shapes is the variable or eight-point
star. This is the basic eight-point star
design.

Creative quiltmakers have invented
almost unlimited variations on this
basic design. At left is an example of
internal geometric shapes turning the
simple eight-point star into so much
more.
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 NEEDLE AND THREAD GEOMETRY       19

YOUR TURN

While quilt designs are found primarily in fabric quilts, quilt designs make beautiful
recycled paper and pen-and-ink art. Use the square here to experiment with creation

of larger designs and shapes from the triangles found with this square. Once you have
created a geometric design you like (you may want to experiment on additional pieces of
graph paper), color the design or cut it out of used wrapping paper and glue the design to
another piece of paper to create a paper quilt block work of art. You may want to use
some of the design ideas on page 20 to inspire your thinking.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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20      NEEDLE AND THREAD GEOMETRY

After you have experimented with geometric
designs, you might want to explore using the quilt
square and its internal shapes as the basis for an
animal or human design such as that shown here.

Below are other traditional quilt block patterns that may interest you.

SUGAR BOWL HANDY ANDY WINDMILL

WEATHERVANE DUCK AND DUCKLINGS ANVIL
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 NEEDLE AND THREAD GEOMETRY       21

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

The Japanese explore the geometric designs
inherent in the sphere through the creation

of temari balls. These small (2- to 21/2-inch-
diameter) balls decorated with geometric thread
designs begin as a small piece of bundled fabric.
The artist winds thread tightly around the
fabric until a spherical shape appears. The artist
then divides the sphere into quadrants by lines
of thread on which he or she creates a geometric
design. Mothers and grandmothers made
temari balls for children to use in games like
kickball and handball.

TO MAKE A TEMARI BALL, FOLLOW THESE INSTRUCTIONS:

Materials:
� 6-by-6-inch square piece of fabric

� Ball of yarn

� Embroidery needle

� Embroidery thread (various colors)

1. Bundle the fabric and wrap yarn around it until you have made a ball.
(Alternatively, you can begin with a hard foam ball that you wrap with yarn.)
Once the ball is the size and shape you want, cut the yarn. Wrap the end of the
yarn around another piece of yarn in the ball and tie it off.

2. Think of the ball as a globe with the north and south poles at the top and bottom
of this sphere, respectively. With a needle and embroidery thread, sew the thread
so that it cuts the sphere into two hemispheres going through the north and
south points. Then, sew another thread dividing the sphere in half again at a
90-degree angle from the first thread. Now the sphere is divided into four equal
segments or spaces north to south. Next, sew on an equator line that cuts the
sphere in half going east-west.

3. Use these basic reference points to create a geometric design on the sphere. Use
brightly colored thread to sew lines onto your sphere, crossing your basic lines
until the entire ball is covered.
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STRAIGHT TO THE ARC
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

9
An arc is a curved line that is part of the circumference of a circle. Is there a way to turn

straight lines into an arc? Can you turn straight lines into a parabola? A parabola is a
special kind of curve.

Here’s a bit of dot-to-dot fun. Each of the figures below shows you how you can make
curved lines from connecting the dots on the rays of an angle. Here’s what you do for
each angle you explore:

1. Draw each of the angles shown in the figures below. Make one ray of each
horizontal on your paper. For each angle, follow the directions below.

2. Place dots at regular intervals on each ray of the angle. The placement of the dots
on each line segment or ray is the same.

3. Connect the dot farthest from the intersection on the top ray to the dot closest to
the intersection on the horizontal ray.

4. Continue drawing line segments. On the top ray, as you move to a dot closer to
the intersection to start a line segment, connect it to a dot on the opposing ray
that is one point further from the intersection.

1 What do you notice about the shape you create from the lines? In which case do
you create the arc of a circle?

Try something else. Draw your 90-degree angle again and this time place dots at
irregular intervals on each ray. When you connect them in the same manner as
you did before, what do you see?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

You can create endless designs connecting dots with lines on geometric shapes. For
example, you can make a circle. Use the four 90-degree angles in the corners of a

square to make a circle as shown below at the left. Or, use the sides of an equilateral
triangle to make an attractive design as shown below at right.

TO MAKE A DRAMATIC IMAGE OF ONE OF THESE DESIGNS,
YOU NEED THE FOLLOWING:

� Black paper

� 1/4-inch-square graph paper

� Glue or tape

� Ruler

� Pencil

� Needle

� Bright-colored embroidery thread

Draw a square, equilateral triangle, or other polygonal shape of your choice on a
6-by-6-inch sheet of graph paper and draw your design with ruler and pencil. Thread
your needle and knot it. Glue the graph paper to the back of your black paper. Begin
by pushing your knotted thread through the graph paper and onto the black paper to
make your design. Now, needle your way to a dramatic geometric picture.
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24      STRAIGHT TO THE ARC

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

I f you make an arc or curve for each angle of a square or equilateral triangle, you can do
a symmetry search of your design. Look at the figures on page 23.

2 In the square, can you find reflective and/or rotational symmetry?

3 In the triangle, what kind of symmetry can you find?

You might want to try to explore a more complicated design with your needle and
thread. Look at the designs below.

4 What kinds of symmetry do you find?

What kind of symmetry do you find in the designs you make?
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ONE SIDE OR TWO–THE PAPER
BAND MEETS AUGUST MÖBIUS

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

10
August Möbius was an astronomer who also studied mathematics, particularly geometry.

He was very interested in a field of geometry called topology. Topologists are interested
in finding out what makes stretchable and shrinkable objects alike and different from one
another.

Möbius made some interesting discoveries when playing with a simple paper band. He
explored whether an object has one side or two.

Take a strip of paper. How many sides does it have? Tape the strip into a ring. Trace
around the band until you get to your starting point. Do you have a line on one side of
the band only? Now trace the other side in the same way with a different-colored pencil.

1 How many sides does the band have?

PAPER STRIP PAPER BAND

Take another strip of paper and put a half-twist into it before you tape it into a ring.
Trace a line around the ring until you return to your starting point.

2 How many sides does this band have?

PAPER BAND WITH HALF-TWIST

Möbius’s discovery has been valuable for users of machinery. Use of half-twisted rubber
bands in machinery helps bands to wear more evenly as they go round and round,
connecting machinery parts and doing their job. It gives the bands a longer useful life.
This reduces the machine owner’s cost of doing business.
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26       ONE SIDE OR TWO—THE PAPER BAND MEETS AUGUST MÖBIUS

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Make three paper bands: a band (paper band with a half-twist), a band with no twist,
and a band with a whole twist. Take one strip, the untwisted band, and the whole

twisted band, and cut them in half down the middle, lengthwise, of each band. What do
you find? What happens to each band? Trace a path with a pencil on each resulting band.
What do you find?

Now, cut the band in half again. Trace the path of the band.

3 How many sides does it have now?

Make a band using this cross shape in the dimensions shown below. Tape one pair of
opposing legs together with no twist and the other pair together with a half-twist.

Trace a pencil path on this band. How many sides does it have? How is it like the strip?
How is it different? Cut the band apart on the midline. What happens?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Make the cross shape again with paper. This time attach each pair of opposing legs with a
half twist.

What happens when you trace the path? Cut this shape in half down the middle, or
midline. What do you get? Try variations. What happens if you put a whole twist in
the cross?

AND ANOTHER THING

The Klein bottle is a three-dimensional version of the strip. It is a bottle with only one
side. Here is how it looks.

If you poured water into this bottle, what would happen? Where would the water go?
Can you figure out how to make a Klein bottle from paper? If you cut a Klein bottle in
half the right way, you get two strips.

4 Can you figure out where to cut the bottle to turn it into two strips?



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Y e

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

28

GENUS OF A SURFACE—
THE TORUS
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11

In topology, the answer is yes. If that seems strange to you, it is because we tend to think
of shapes on rigid, inflexible surfaces such as paper. In topology, mathematicians look at

the features of an object as if the object can be stretched and pulled.

One way a topologist labels an object is by how many holes it contains. An object with
no holes, such as a Frisbee or paper plate is a genus zero object. The genus of a surface
or object is a number representing the maximum number of cuts you can make through
the object without cutting it into more than one piece. Any cut through a genus zero
object—that is, any cut that is not a hole, but cuts it into two pieces—gives you two new
objects to evaluate. If an object has one hole in it, it is a genus one object because it has
one hole. By making one cut in the object, you can turn it into a genus zero object.

Is a

equivalent to a

or?
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A topologist looks at objects in this way because it helps him or her decide how objects
that look different might really be the same, topologically speaking. For example, is a
donut the same as a coffee mug? To a topologist, they are the same because both objects
are genus one. They each have one hole and the same number of surfaces.

Let’s look at the donut and coffee cup problem to see how the donut and coffee cup
are alike.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

To explore the topology of a donut, you will need the following:

� A piece of a balloon

� Clay

Let’s begin with an examination of a piece of balloon. A topologist is not concerned with
how big or what shape an object is. Cut a square from the piece of balloon. You can
stretch it to make it bigger or twist it any way you want, but from a topologist’s point of
view, it still has the same properties.

Now, let’s see how this works with a lump of clay. To a topologist, a donut and a coffee
cup are equivalent because, while their shapes may be different, they have the same
number of holes and the same number of surfaces. Explore this by doing the following:

1. Make a donut shape from your clay.

2. Gently change the shape of the donut by pushing the hole to one side of the
donut. This hole will become your handle.

3. Take the large part of the clay and press it into a bowl or cup shape with the “hole
handle” attached.

Try to do all these steps without tearing the clay into pieces. If you take off a hunk of clay
to make the changes, you change the lump into two forms. You have made a “cut” and
now you have two different objects to analyze topologically—you have to figure out the
genus of the new objects you have made. Before you go to this next step, try to find the
coffee cup in the donut without cutting or tearing the lump of clay.

AND ANOTHER THING

Take a genus survey of objects around your home. Find out what genus number they
have. Consider a bolt, nut, bowl, slotted spoon, book, and a plastic six-pack holder.

Or, do a genus survey of the letters of the alphabet, grouping them into groups of genus
zero, one, two, and so on. Graph your results. Remember, you are looking for holes.
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IT’S OPTICALLY
ILLUSIONING
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12
In mathematics, precision and accuracy are important. You cannot always trust your eyes

when you look at geometric shapes, however, because they can play tricks on you. This
whole idea of our eyes playing tricks on us became very interesting to the thinkers and
researchers of the late 1800s. They wondered why we see things that aren’t there.

These “tricks” are called optical illusions. In the 1800s, psychologists and physicists began
to research, do studies, and write articles about the what and why of optical illusions.
They found that optical illusions happen for several reasons. One has to do with the
shape of our eyes. In other optical illusions, our minds have a certain response to the
visual stimuli that makes us expect to see something that is not there. In some cases, the
shape of our eyes works together with our minds to make the illusion.

Let’s investigate some optical illusions that involve mathematical shapes. The following
illusion is famous and is the illusion that may have touched off the interest of nineteenth-
century thinkers into the subject. It was investigated by Johann Zollner, who lived from
1834 to 1882, and is sometimes called “Zollner’s illusion.” It consists of straight parallel
lines and short angled lines.

Are the longer lines straight? Are they parallel? Measure the spaces between the long lines
with a ruler to find out.

Another famous illusion is called the twisted cord effect. Is this picture a spiral or is it a
series of circles? Trace the curved shapes with your finger to find out.

ZOLLNER’S ILLUSION TWISTED CORD EFFECT
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32       IT’S OPTICALLY ILLUSIONING

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Make your own versions of Zollner’s illusion. Try making the short angled lines at 60- and
120-degree positions. Draw the illusion again and make the angle of the short lines at

30- and 150-degree positions. Show your illusion samples to others. Does the change in
angle of the short lines alter how people see the long lines?

Let’s explore some other illusions involving shapes. Try the famous curved-shaped
illusion. It is sometimes called the convergence/divergence illusion because our eyes are
drawn in and then out, causing us to see the images in a certain way. Cut two versions of
this shape, exactly the same size, from paper. Put one above the other. Does one look
bigger? Which one? Place them side by side. Does one look bigger?

Now try another kind of size illusion. Draw a right triangle on graph paper. Make the
vertical leg of the right angle 6 inches long and the horizontal leg 31/2 inches long. Draw
two quarter-sized circles in the triangle—one at the top end of the 6-inch leg and one
an inch or so above the 31/2 -inch leg. Does one circle look bigger? Try this one on your
friends. Try this illusion again and move the circles into different places. How does this
affect what you see?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Make two 6-by-6-inch squares—one from black paper and one from white. Then make
two 2-by-2-inch squares—one from black paper and one from white. Place the small
squares on the square of the opposite color. Which square looks bigger?

AND ANOTHER THING

F ind out how color affects optical illusions. Do some of the illusions above and add
color to them. Try different-colored circles in the triangle. Try making the small 2-by-

2-inch squares in red and blue and yellow and purple. How does color affect what you
see? Because you know the sizes of the shapes you cut, try these illusions on your family
and friends. Record the results. Can you think of some other illusions to try? Can you
research some other illusions in books and change them a little, such as by adding color,
to test them out on your friends?
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A STRAW HOUSE
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

13

TAJ MAHAL, AGRA, INDIA ST. BASIL’S CATHEDRAL, MOSCOW, RUSSIA

CHURCH OF NOTRE DAME DE LA GRANDE, POITIERS, FRANCE

PARTHENON, ATHENS, GREECE

The history of architecture is the history of the use of mathematics to create larger, more
dynamic, more useful, and more beautiful structures. To build the ancient pyramids of

Egypt and Mexico, planners had to consider triangles, squares, polyhedra, and angles and
use all their best estimation skills. In designing the great cathedrals of medieval Europe,
architects analyzed arcs, angles, geometric shapes of many types, and proportional
symmetry with mathematical formulae to determine how to use the center of gravity to
create high, vaulted ceilings.

More recently, Frank Gehry and other architects have added mathematical questions to
the discussion, such as how to use the parabola, spirals, and structural designs from nature
in human-made public buildings. For example, inventor and architect Buckminster Fuller
used spheres, angles, triangles, arcs, and other geometric concepts in his geodesic domes.

To begin to understand the integrated relationship between mathematics and architecture,
take a survey of buildings in your own community. Look at homes, churches, synagogues,
temples, public buildings, and local archeological sites. Look for framing structures,
doorway shapes, windows, light openings, and stairways. Can you find polygons, polyhedra,
arcs, spheres, spirals, and symmetry in these structures?
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YOUR TURN

To explore the effects of changing angles, proportion, and geometric shapes in
architecture, try a building project of your own.

You will need these supplies:

� Plastic straws

� Scissors

� Straight pins, paper clips, and/or pipe cleaners

Using your knowledge of structures and their geometric foundations, build a tower. You
can cut the straws to any length you choose. You can hook them together using straight
pins, unbent paper clips (inserted into straws), and pipe cleaners (inserted single- or
double-thickness into straws as needed to make them hold together).

What is the tallest structure you can build with a 15-centimeter diameter base?
a 30-centimeter diameter base? What is the optimal length for your straws?

Now, try something a little different. The dome in the picture below is known as a geodesic
dome. Can you build a geodesic dome with a 20-centimeter base? a 30-centimeter base?
The dome structure has no interior support and can be made from triangular shapes.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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36      A STRAW HOUSE

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

D ifferent shapes and sizes of structures can hold different weight, or load. For example,
columns might hold up the weight of a roof structure. Greek architects created three

different styles of architectural design called Doric, Ionic, and Corinthian. Below is an
example of the column top used in each design:

Try your hand at designing paper columns. To make your columns, use 8 1/2-by-11-inch
paper. Roll it and test the strength of your pillar designs by piling on weight, or load—
perhaps one paperback book at a time.

Change the diameter of your columns. Then change the length. How does this affect
strength? Accordion-pleat the paper and make a column. Fold a square column. How do
these changes affect pillar strength?

DORIC IONIC CORINTHIAN
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THE GEOMETRIC FOLD—
SHAPES WITHIN SHAPES

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

14
The simple act of folding paper can yield interesting mathematical results. One of the

best known and most highly refined types of paper folding is the Japanese art of
origami. Purists make their designs solely from folding the paper with no help from
scissors or glue.

Historians believe that the art of origami dates back almost 1,500 years to the sixth
century A.D., when Buddhist monks first brought paper to Japan from China. Paper was
very expensive and valuable because it was still difficult to manufacture. As such, it was
treated with care and great respect. Folded creations were made from it and became an
important part of different Japanese ceremonies. Since those early beginnings, the art of
origami has been shared and passed down from one generation to the next. Today, people
around the world enjoy the craft of paper folding.

The basic paper shape is a square. Why a square? Fold a square piece of paper in half.
Unfold it and fold it in half again the other way. By making these two folds, each of
which divides the square into symmetrical halves, you create four congruent squares, or
squares of the same size. Now fold the square diagonally so that you make a triangle
when you fold the square in half. Unfold the paper and fold it in half the other way.
These two folds divide the square into symmetrical triangles. What kind of angles do
your half-folds make? The square allows the origami artist to make many folds that result
in right angles. Do you think this has something to do with why the square is the basic
shape from which other shapes are made?



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Y e

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

38       THE GEOMETRIC FOLD—SHAPES WITHIN SHAPES

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

The art of origami offers many opportunities to explore different geometric shapes and
their relationships. Fold a design of your choice or use these origami directions.

OLD UPRIGHT PIANO

1. Hold the paper square as shown below on the left. Fold the paper in half so that
points 1 and 2 fall on points 3 and 4, respectively. Fold the paper in half again so
that points 5 and 1 fall on points 6 and 4, respectively. Unfold.

2. Fold points 5 and 1 to the center line and points 6 and 4 to the center line.

3. You are now holding a square shape with two rectangular flaps on the front. With
the left flap, fold a triangle so that point 5 is on the outer fold of the left side of
the square. Repeat with the right flap so that point 6 is on the outer fold of the
right side of the square.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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4. Open the flap at point 5 and flatten it to make a simple house shape. Do the same
with the flap at point 6.

5. Fold the top edge that runs between points 7 and 8 down to the bottom of the
two triangles.

6. Fold up the top bottom flap (edge runs between points 9 and 10) so that the
crease is at the bottom of the triangles. You have a rectangular flap. Now take the
top of this flap (between points 9 and 10) and fold it toward you a quarter of the
way down the width of the rectangular flap.

7. Fold in the two sides (running from points 11 to 12 and from points 13 to 14) to
the center line and open to a 90-degree angle. See the picture below. Let the top
rectangular flap down. Do you see the old upright piano?
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40       THE GEOMETRIC FOLD—SHAPES WITHIN SHAPES

WATER BIRD

1. Hold the paper so that there is a point at the top. Fold point 1 to point 2. Now
you have a triangle with the fold at the top. Fold the triangle in half and unfold it.

2. Hold the triangle at point 3 and open the paper at point 4. Press the fold line that
ends in point 4 to the center fold of the triangle to meet point 3 and press flat.
Repeat with point 5.

3. Now you have a diamond shape. Hold it with the open end down. Fold the top
layer of paper at points 1 and 2 to the center line and press.

4. Fold point A down toward you. Unfold points 1, 2, and A.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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5. Lift the top layer of point B to make a long diamond. This is a bit confusing, but
it works. Look at the picture carefully. Turn the object over and lift up the
remaining layer of point B to make a second long diamond. The diamond has two
“legs” at the bottom.

6. Hold the diamond so the two legs are facing down. Fold the two legs
(points C and D) up as shown. Then unfold them.

7. Fold point C inside itself and squash it. Do the same with point D.

8. Fold the tip of point D down to make the bird’s head. Look inside the bird
between the two large triangles. There is a point. Fold the outer flaps at points E
and F down on each side so that the crease line is at the inner point.
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42       THE GEOMETRIC FOLD—SHAPES WITHIN SHAPES

BUZZER

1. Hold the square so a point is at the top. Fold point 1 down to point 2. Then fold
point 3 to point 4 and unfold.

2. Fold point 3 to point 2 and press. Fold point 4 to point 2 and press. You have a
diamond shape with the opening at the bottom.

3. Turn the open point of the diamond to the top. Fold the left triangle at point 1
down so that the tip extends below the diamond shape. This is flap 4. Repeat with
the other side. This is flap 3. These are the buzzer’s wings.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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5. Turn the buzzer over. Fold point 1b down about three-quarters of the way to the
center line (even with the fold line on the opposite side). Turn the buzzer back over.

4. Take the top flap at point 1a and fold it down so that the crease line is about 3/4 of
the way from point 1 to the center fold of the diamond.

6. Fold points 3 and 4 to the center line and turn back over. Turn corners at points
5 and 6 down at angles for eyes.

By folding a square of paper into a shape of your choice, you change the paper from a
two-dimensional object into a three-dimensional one. Unfold your object and return it to
the two-dimensional world.

It’s time to search the creases on the paper to discover the mathematical secrets they hold.
How many of the math principles below can you find illustrated on your origami square?

� Can you find lines of symmetry? How many can you find? Look from corner to
corner and midpoint to midpoint. Why kind of symmetry do you see?

� What polygons do you find? How many triangles are there? Are they right-angle
triangles, isosceles, and/or equilateral? How many quadrilaterals are there? Are
there squares, rectangles, other parallelograms, rhombuses, trapeziums, or
trapezoids? Can you find pentagons, hexagons and other multi-sided polygons?
Can you find a polygon with eight sides? with twelve sides?

� Congruent shapes are those of the same shape and size. Can you find congruences?
How many polygons of the exact same size and shape can you find?

� Can you find similarities? Are there small and large versions of the same triangle or
quadrilateral? Measure the angles of the triangles to check this out. What is the
ratio of the size of one similar figure to another?

� An iteration is a repetition of patterns within patterns. Can you find iterations?
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44       THE GEOMETRIC FOLD—SHAPES WITHIN SHAPES

AND ANOTHER THING

In origami, you fold two-dimensional paper to make a three-dimensional object. Other
paper-folding tricks are interesting in their own right.

1 Can you make a pentagon by folding a 1-by-10-inch paper strip?

Can you fold a parabola? Take a sheet of 8 1/2-by-11-inch paper. Place a dot about
2 inches from the edge on the 11-inch side. Now fold the sides of the paper again
and again using the dot as the crease point but changing the angle of the paper, as
shown in the picture below.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2 Can you fold an ellipse? Using what you learned about folding a parabola, can you
figure out how to fold an ellipse using a circle-shaped sheet of paper?
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PALINDROMES
BY THE NUMBER

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

15
What is a palindrome? A palindrome is a phrase, word, or number that reads the same

forward or backward. Here are examples of word palindromes:

MADAM MOM BOB

These are examples of sentence palindromes:

MADAM, I’M ADAM. ABLE WAS I ERE I SAW ELBA.

A number palindrome is a number such as 12,321, which is the same no matter which
direction you read it. When you play with numbers a bit, you discover that they have
interesting properties. One of these properties gave rise to what mathematicians have
called the palindrome conjecture. The conjecture said that you can make a number
palindrome by adding any number to its inverse (for example, the inverse of 123 is 321),
and then adding that sum to that sum’s inverse and so on until the sum you get is a
palindrome. It works like this:

12,934

+ 43,921

56,855

+ 55,865

112,720

+  27,211

     139,931

This conjecture is true for a great many numbers. In fact, it takes less than twenty-four
steps to reach a palindrome for most numbers. In the 1960s, a mathematician named
Charles Trigg took a closer look at the old conjecture. He focused on numbers smaller
than 10,000. He found that there were only 249 integers under 10,000 that did not yield
a palindrome after 100 steps. He decided that they probably would not result in a
palindrome no matter how many additions you did.

9193 31

, which is a palindrome



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Y e

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

46       PALINDROMES BY THE NUMBER

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Choose some numbers of your own to test how many steps it takes to make a
palindrome. Can you find any of the numbers that do not yield palindromes?

You may not have that much spare time.

12 23,414
+ 21 + _______ + 41,432 + _______ + _______

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Here are some word and phrase palindromes: bob, tot, dad, pop, pup, radar, pot top,
and rotator. Can you think of some others?

Can you make up some sentence palindromes? Here’s a short one to get you going:

Tap Pat.

Don’t worry if your palindrome sentences are a little strange. They are often a slice of
nonsense.



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Ye

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

47

NETWORKS NOT
ON TELEVISION

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

16
You probably know what a maze is. It’s something you can get lost in because of all the

twists and turns and dead ends. But what’s a network? Like a maze, a network is a
path, but the path of a network is a series of lines and vertices (or places where the lines
meet). You can also think of a network as a drawing or diagram of a problem. The
problem is how to get from one place to another on the paths shown without going over
part of the path more than once.

Some networks are traversible. This means that, by starting at one place on the network,
you can trace the entire set of lines going through each arc (or line) only once without
lifting your pencil. This is the problem of the network you must solve. While you can
only go over each line once, you can cross the points or vertices as many times as you like.

Here are some networks you might know:

1 Which of these networks is traversible?
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48       NETWORKS NOT ON TELEVISION

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Leonhard Euler was a famous Swiss mathematician who lived from 1707 to 1783. He
studied the problem of networks to figure out why some were traversible and some

were not. Can you figure out what Euler learned?

Look at the four networks below. Two are traversible. Two are not.

To figure out if a network might be traversible, Euler looked at the vertices of the
network. A vertex is a point on the network at which lines and/or arcs intersect. Some
vertices have an even number of arcs/lines passing through them. These are even vertices.
Some vertices have an odd number of arcs/lines passing through them. These are odd
vertices. How many odd and even vertices do each of the networks above have? How
many odd vertices are in the traversible networks? How many are in the non-traversible
networks? What did Euler find out about traversible networks?

He figured out that traversible networks can have no more than two odd vertices.

2 Which of the networks above is traversible?

Draw your own network. Based upon the number of odd and even vertices your network
has, can you predict whether or not it will be traversible?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

A famous network problem is the Konigsberg Bridge problem. In an old town named
Konigsberg, which was located in Prussia (now part of Russia), the Pragel River forked

around two islands. These islands were connected to the town by a series of seven bridges.
Townspeople used to walk the path of the bridges and islands trying to figure out if there
was a way to cross all the bridges just once in one continuous trip.

Is there a way to cross each bridge only once and traverse the entire path?

This problem came to the attention of Euler when he was working at the St. Petersburg
Academy in St. Petersburg, Russia. While solving the problem of the Konigsberg Bridge
path, he created a whole new field of math called topology.

3 Can you figure out what Euler’s solution was? Is it possible to go over each bridge
just once?
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THE MATHEMATICS
OF GAMES

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

17
Many games involve a variety of mathematical issues and thinking skills that are useful

in problem solving. This is especially true of the age-old games that have survived for
centuries. Some of these games are merely games of chance in which probability is the
center of all the game action. In other games, the more you play, the more you learn
about the strategies involved in winning; it is this development of skill and the use of
strategy that gives games a timeless appeal.

How is math really involved in the games we play—besides totaling up the score?
Let’s look at some of the ways.

PROBABILITY
Whether it is the roll of dice, the flip of a coin, or the spin of a dreidel, probability (or
the chances of a certain result coming up) is a part, and sometimes all, of many games.
You know that when you flip a coin, there is one chance out of two of a certain result.
With the throw of a die (two die are dice), it is one out of six. With a dreidel spin, it is
one out of four. (A dreidel is a four-sided top used in a game played during the Jewish
holiday of Hanukkah.) In some games the probabilities become more complicated. This
is true in the Native American game of sticks, in which there are six different objects
thrown each time, with each object having two possible results.

LOGIC, STRATEGY, AND PROBLEM SOLVING
Playing games is not all, well, fun and games. Many of the games with the longest
histories and broadest appeal involve lots of thinking and the use of strategy. Sometimes a
player must think logically. Sometimes he or she must anticipate what an opponent will
do and take that into account in his or her game plan. Sometimes games present a player
with problems that he or she must solve in order to continue in the play.

NETWORKS
Many traditional games are played on a network-type design in which the playing pieces
are moved from one vertex to another. A vertex is a point at which lines or angles intersect.
Look at the board designs on the following page for two very old games.
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PONG HAU KI ALQUERQUE
CHINA EGYPT

Are these networks traversible or nontraversible? Do you think this aspect of the network
makes any difference in the games played on these board designs? (See “Networks Not on
Television,” page 47, to learn about traversible networks.)



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Y e

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

52      THE MATHEMATICS OF GAMES

YOUR TURN

Take a look at some of the games you may have played. Choose one game and figure out
the following:

� How does your game involve chance or the probability of one result versus
another result?

� Do you use strategy to win the game, or is it simply a game of chance?

� If you use strategy to play, how does your strategy depend upon your opponent’s
skill or strategy in playing the game?

� Can you limit the effects of chance by developing a strong strategy?

Following are instructions for how to make and play games that have been played in
some form since ancient times. Choose one of these games, play it and analyze it using
the questions above.

PLAYING INSTRUCTIONS FOR GAMES OF THE WORLD
PONG HAU KI, A CHINESE VERSION OF TIC-TAC-TOE
Tic-tac-toe is a two-player game that most children learn to
play. Pong Hau Ki is a Chinese version of this game. Like Tic-
tac-toe, once you get the hang of it, it can be a very short game.
The game is played with a board like the one shown here. The
object is to use your markers to block any further move by your
opponent.

To make the game, make this design with a marker and a ruler on a stiff piece of paper or
cardboard. Give each player two markers. Each player uses markers that are a different
color from the other player’s markers.

Playing Directions

1. Players take turns, and no one may pass a turn.

2. Play begins by first player taking a turn placing a marker on one of the vertices on
the board. Then the second player places a marker.

3. If no one has won by the time all the markers are set, play continues with players
taking turns moving markers on the lines to an empty spot or vertex.

4. The player who can block both his or her opponent’s markers wins.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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Try a variation on this game with the board modified as shown
here. The rules are the same; two empty spots have simply been
added on the vertical lines. How does the game work? Can one
player win?

ALQUERQUE
Alquerque has its origins in the ancient Egyptian culture.
Historians believe it traveled to northern Africa, and later
the Moors brought it to Spain. The Spaniards took it to
Mexico when they settled in the New World and the Native
Americans of what would become the southwestern United
States became Alquerque players.

To play Alquerque, you will need to draw the board as
shown at right on stiff paper. Each of the two players gets
twelve markers. Each player’s markers are a different color. To begin the game, players set
up their pieces as shown here. The object of the game is to capture all of your opponent’s
pieces.

Playing Directions

1. Decide which player goes first. Players take turns moving their pieces to any
adjacent empty spaces on the board.

2. A player can capture an opponent’s piece(s) by jumping an adjacent piece and
landing in an empty spot on the board. A series of jumps is permitted, just as in
Checkers.

3. If a player fails to capture an opponent’s piece(s) when he or she can, the opponent
can capture or take the piece that should have jumped. Play continues until one
player (the winner) has taken all of an opponent’s pieces or one player has more
pieces than the other and it becomes apparent that the other player has no more
possible moves, or one player has put the other player in a position in which he or
she cannot make a move. The game can end in a draw.
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NINE MEN’S MORRIS
This board game is one of the oldest in the world. It is also
known as Mill (meaning “row of three”). The first known
version of this game was found on a temple roof in Egypt.
Experts think it is more than 3,000 years old.

Here’s how to make your own version of Nine Men’s Morris.
You will need to draw the design shown here on your
cardboard with a marker. Use a ruler and place circles or
dots on each corner—that is, where the lines intersect. Give
nine markers of one color to each player, such as nine white
beans to one and nine red beans to another.

Playing Directions

1. Each player gets nine playing pieces of a single color. Choose the player to go first.

2. Each player takes turns placing one piece on the board. Pieces may be placed
where the lines intersect—that is, where the circles are. The object of the game is
to place three pieces in a row on a line. This is called “making a mill.” Once all
pieces are placed, pieces are moved to adjacent open circles.

3. When a player makes a mill, he or she gets to take one of his opponent’s pieces. No
piece may be taken from an opponent’s mill unless there are no other pieces to take.

4. The game ends when one player has only two pieces left. That player loses.

OVID’S GAME
This game is said to have been played by Ovid, the Roman poet.
It may have been the forerunner of Mill or Nine Men’s Morris.
The game is for two players and uses a board like that shown here.

To make the game, you will need to draw the game board on stiff
paper and locate six markers—three in one color and three in a
second color. The object of the game is to line up three markers
in a row.

Playing Directions

1. Players choose who will go first. Then players take alternating turns. No turns can
be skipped.

2. First, the players take turns placing each of their pieces.

3. If no player has won by the time all the pieces are placed, players take turns
moving their pieces to empty adjacent spots on the network until someone lines
up three in a row. That player wins.



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Ye

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

 THE MATHEMATICS OF GAMES       55

NIM
This game is thought to have originated in China. To make the game board, draw three
horizontal lines on stiff paper. In the center, draw a vertical line as shown. Place three
buttons, five buttons, and seven buttons on each horizontal line, respectively, to the left
of the center line as shown below. The object of the game is to be the last player to be
able to make a move.

Playing Directions

1. Choose a player to go first. Players take turns. No player may skip a turn.

2. On each turn, a player chooses any number of buttons to move across the center
line, but may only move buttons on one line each turn.

3. The winner is the player who makes the last move.

THE BEAN GAME
This game is similar to the ancient Chinese game called nim. To play this game, set up
fifteen beans as shown below. The object of the game is to force your opponent to remove
the last bean.

Playing Directions

1. Players take turns removing beans. Decide which player goes first.

2. On each turn, a player removes as many beans as he or she chooses, except that
beans can be removed from only one row in each turn.

3. Can you figure out a strategy that virtually assures that you will win?
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STICKS (OR WALNUTS OR PITS)
This game involving six playing pieces, each with two sides, has been played in Native
American cultures from Mexico to Canada. It has been played with walnut halves, fruit
pits, sticks, and small pottery disks.

To make the game equipment, you need six craft sticks or tongue depressors and twenty
beans, buttons, pebbles or other counters. Decorate one side only of each stick and you
are ready to play. While the game has been played with a variety of rules, here is a good
set of rules with which to begin. The object of the game is to have the most counters at
the end of play.

Playing Directions

1. Two players or two teams play. Each side begins with ten counters (or a number of
your choice). The two sides take turns throwing the sticks.

2. Each throw is valued in this way:

� All sticks land faceup—player takes three counters from opponent
� All sticks land facedown—player takes two counters from opponent
� Sticks land three faceup and three facedown—player takes one counter from

opponent
� Sticks land in any other combination—player takes no counters and loses no

counters

For a different version of the game, alternate throw values are:

� All sticks land faceup or facedown—player takes two counters from opponent
� Sticks land three faceup and three facedown—player takes one counter from

opponent
� Sticks land in any other combination—player neither takes nor loses counters

KALAH
This is one of the oldest games in the world. It is thought to be at least 7,000 years old.
It is very popular all over Africa, and one of its most well-known names in the United
States is mancala.
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To make the game equipment, you will need one twelve-compartment egg carton
(remove lid), two small cups, and thirty-six markers such as beans, small stones, or
buttons. Set up the two cups at the ends of the egg carton. The cup to the right of each
player is his kalah or special place. The object of the game is for a player to collect the
most markers in his or her own kalah.

Playing Directions

1. Decide which player goes first. Then players take turns. Players may not pass
a turn.

2. Place three markers in each of the board spaces. Place no markers in the kalahs.

3. To play, a player picks up all of the pieces in one of his or her six spaces (the six
spaces on his or her side of the board) and then drops them, one by one, in each
space moving counterclockwise. If the player arrives at the last space on his side of
the board and still has markers, the player puts one in his or her kalah and
continues counterclockwise placing them in his opponent’s spaces. At no time
does a player put markers in the opponent’s kalah. If the player’s last marker drops
in a space on his or her side, that player gets another turn. If that space is empty,
he or she gets to take all the markers out of his opponent’s space directly opposite
his empty space. These markers which he has captured go in his own kalah.

4. With these rules in mind, the players take turns. The game is over when all six
spaces on either player’s side of the board are empty. At this point, the player who
has markers on his side gets to put those in his or her kalah. The player with the
most markers in his or her kalah wins.

5. The game is made more difficult by starting play with more markers in each
space. As you develop skill, try beginning play with four, five, or more markers in
each space.

AND ANOTHER THING

Make up a game of your own that interweaves probability, strategy, and networks.
Create a playing board by developing a simple network. Decide how many players you

need, what the playing pieces will be, and what a player must do to win. Can you involve
probability in your game with dice or coin throws? Can heads and tails of a coin
(signifying numbers like 1 and 2) tell players how to move or how many turns to take?
Name your game and try it with your friends. What works well? What adjustments need
to be made in the rules to make it work better?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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PUZZLES AND GAMES—
THE TOOTHPICK WAY

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

18
Many thinking skills go into solving math problems. The more advanced the

mathematics, the more skills you need. You rely less on straight memorization and
more on your ability to think clearly and logically. Many great mathematicians, scientists,
and writers enjoyed puzzles and tricks. Lewis Carroll loved word games. Benjamin
Franklin enjoyed making magic squares. Still others enjoyed puzzles such as toothpick
and coin puzzles.

Successful puzzle-solving sometimes requires you to think in a logical way. Many puzzles
distract the person puzzling them out with unnecessary information. To solve the puzzle,
you must think in a straight line and avoid taking the wrong road because of assumptions
you make. Sometimes puzzle-solving requires that you stop looking at the puzzle in the
usual way and try to see it from a different perspective.

Toothpick puzzles allow you to exercise these skills and focus your thinking. Many of
them are geometric in nature because the toothpick acts like a kind of line segment.
Doing these puzzles exercises your skill in seeing the relationship between geometric
designs and shapes. But, remember, not all toothpick puzzles involve geometric shapes.

Here are a couple of classics to get you started on good puzzle-solving thinking.

1 A Subtraction Puzzle: Look at the fifteen toothpicks shown. Can you remove six to
leave ten?

2 Lose That Square: Look at the five squares formed by the toothpicks below. Can
you move two toothpicks to turn five squares into four squares?
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3 A Triangular Puzzle: Seven toothpicks make a triangle with a base of three
toothpicks and two equal sides of two toothpicks each. Can you move three
toothpicks to turn one triangle into three triangles? Hint: The three small triangles
will be inside a quadrilateral with only two parallel sides.

4 Triangles and Squares: Can you make two squares and four triangles from eight
toothpicks?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Have some fun solving these toothpick puzzles. You may need to think logically about
how to move the toothpicks or you may need to try looking at the shapes in a new or

different way in order to solve the puzzles.

5 Can you move only one toothpick to make the following equations correct?

Some puzzles require you to think creatively about shapes and their relationships.
Can you change one shape or group of shapes into another configuration of shapes?

6 Find the relationship between geometric shapes. Arrange
twelve toothpicks in a hexagon with six spokes. Move four
toothpicks to create three triangles from the original design.

7 Make a spiral from thirty-five toothpicks. Move four
toothpicks of the spiral to make three squares.

8 Arrange twelve toothpicks in four connected squares.
Move three toothpicks to create three squares.

9 Arrange twenty-four toothpicks in nine squares arranged
in a 3-by-3 block. With twelve more toothpicks, create
four more squares. Then, remove four toothpicks from
your design to leave nine squares.
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AND ANOTHER THING

Now let’s try a little coin fun.

10 Can you turn this triangle upside-down by moving only three coins?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

11 Arrange six coins in a cross shape. Move one coin to form two rows, each of which
has four coins.

12 Arrange twelve coins in a square. Rearrange them to form another square with five
coins on each side.
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UNPUZZLING THE TANGRAM
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

19
The tangram is a Chinese puzzle that became very popular in the 1800s. Tangram

puzzles made from plastic and wood are available as toys today for people of all ages.
One source of the tangram puzzle was a Chinese book from 1813. Lewis Carroll, the
author of Through the Looking-Glass, and Edgar Allan Poe, the author of “The Tell-tale
Heart,” were both great tangram enthusiasts.

The tangram is a square that is divided into seven pieces. Five of the pieces are both
isosceles and right triangles. An isosceles triangle is a triangle with two equal sides. If such
a triangle has one 90-degree angle, it is also a right triangle. There are two large triangles
(of the same size), two small triangles (of the same size), and one medium-sized triangle.
In addition, there is one square and one parallelogram. Over the years, more than 1,600
shapes have been developed using the tangram puzzle to create images of animals, people,
and objects.

The puzzle is made in the following manner:
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Obviously, you can fit the seven pieces into the shape of a square because that is the
shape from which they originate. These same pieces can also be used to form the
following polygonal shapes:

TRIANGLE IRREGULAR HEXAGON TRAPEZOID

RECTANGLE PARALLELOGRAM IRREGULAR PENTAGON
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Begin with two 6-by-6-inch squares of paper to make your own tangram puzzle—one
scratch paper on which to design the puzzle and one piece of sturdy paper or cardstock

from which to make and cut your final puzzle.

1 Examine the tangram puzzle on page 62. How can you recreate it on your square
so that the pieces are the correct size?

First, think about what you know. You know how to make the two large isosceles right
triangles located within the larger triangle ∆ABC. Next, look at the puzzle and check out
the relationships between the sides of the pieces that intersect the diagonal of the square.
Measure them. How do the lengths of the sides relate to each other? Then, measure and
find out about the relationships between the pieces that intersect AD and DC of the square.
Does the intersection point cut each line segment in half? How does this information
help you figure out how to draw the rest of the tangram puzzle? Now, using a ruler and
pencil, measure and draw your own tangram (on scratch paper or directly on your sturdy
paper, as you choose) and cut out the pieces.

2 Can you put the pieces back together to create any of the polygons shown on the
prior page?

3 Can you make the computer desk shown here?

4 Here are a few creations that reside in tangram zoological parks. Can you figure
out how to make them?

NAPPING LIZARD LONELY BEAR

WATCHFUL VULTURE ICE-SKATING GOOSE
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5 Here are three more puzzles for you to try:

GOOSE DINOSAUR SEA MONSTER

AND ANOTHER THING

Making puzzles from geometric shapes has fascinated mathematicians throughout
history. We know a little about the Chinese tangram, but Euclid, the famous Greek

mathematician, was fascinated by the idea of dividing a rectangle into pieces that could
make other geometric shapes. He was thinking and writing about this more than 2,000
years ago.

6 Use what you know about basic geometric shapes to make up your own Euclid’s
rectangle puzzle. Consider using three isosceles right triangles, a square (divided in
half ), two parallelograms, and a trapezium. A trapezium is a quadrilateral with no
parallel sides. Divide your puzzle into eight different shapes. What shapes or
designs can you make from the pieces of your rectangle puzzle? Can you stump
your friends? Can they stump you?

Now try making up your own designs to stump your friends.
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The ancient Egyptians were masters of architectural achievement and invention. They
built the great pyramids. They developed the square sail to harness wind power for

boating. They were able to develop a highly advanced and complex civilization despite
use of very simple arithmetic. In fact, they really used only addition and subtraction.
To multiply, they relied on addition.

Let’s see how this worked. If an Egyptian wanted to find out how much 15 times 31 was—
that is, the total of adding 31 fifteen times—he used a doubling technique. In our system
of multiplication, we call the larger number the multiplicand and the smaller number the
multiplier. In the problem, 31 x 15, 31 is the multiplicand and 15 is the multiplier.

This is how the Egyptians used the multiplicand and multiplier to do multiplication:

To solve the problem of 31 x 15, the Egyptians made two columns that they doubled
like this:

Number of
Multiplicands Total

1 31
2 62
4 124
8 248

16 496

Starting with one multiplicand, they doubled the numbers in each column until some
combination of numbers in the first column totaled the multiplier. In the first column
above, 1 + 2 + 4 + 8 equals 15, or the multiplier. The Egyptians then added the numbers
in the second column that were across from these numbers to find the solution to 31 x 15.

31
62

124 or     31
248 x 15

465 465

HOW THE EGYPTIANS
MULTIPLIED

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

20
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YOUR TURN

Solve 43 x 9 using the Egyptian method.

1 43
43

2 86
+ 344

4  172
387

8  344

Lines 1 and 8 total 9, the multiplier. Add the numbers in the second column that relate
to 1 and 8 to find the answer to 43 x 9. This addition is done for you in the third column
above with the answer in Egyptian multiplication being 387. Now you multiply 43 x 9 in
your usual way to check the answer. Do you get the same answer?

Why does this work? It works because the Egyptian method is just another way of
putting together or totaling the numbers you multiply. Look at the chart below.

Your Method The Egyptian Method

43 43 > one 43
x  9
387 + 43

43
43
43 eight 43s
43
43
43
43

387

Here are three more problems for you to try. Of course, you could multiply them the
ordinary way. Do them instead using the Egyptian method.

17 x 12 23 x 16 16 x 13

Now try Egyptian multiplication with three problems of your own.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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68      HOW THE EGYPTIANS MULTIPLIED

AND ANOTHER THING

The Egyptians were a very practical people, so they only developed mathematical
processes that they needed for the jobs that faced them. Perhaps this is why they only

developed a very basic form of fractions. While they knew that fractions were parts of a
whole, they never learned how to use any number but 1 as a numerator. For example,
they understood    , but did not understand    . If they divided a whole into     , they
could only write it as a sum of fractions with numerators of 1. Using this method,
      becomes      +      .

1 What is      ?

1
2

4
8

 7
12

 7
12

1
2

 1
12

 13
16

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Ye

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

69

MAGIC SQUARE
IN THE MAKING

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

21
A magic square is a group of numbers arranged in a certain way so that the numbers

have an interesting property—that is, the sum of any row, column, or diagonal is the
same. Historians believe the first magic square called lo-shu dates from ancient China
before 2000 B.C. There is a legend about its discovery that says an emperor saw the
special number sequence on the shell of a tortoise near the bank of the Yellow River.

The lo-shu magic square is made up of nine
smaller squares, three across and three down.
Each square includes one of the first nine
whole numbers arranged in such a way that
no matter which direction you add them,
including diagonally, the numbers total 15.

Once you have a magic square, you can turn
it into a new magic square by switching the
position of complementary numbers.
Complementary numbers are any pair of
numbers that, when added together, equal
the sum of the largest and smallest numbers
in the square. For example, the sum of the
largest and smallest number of the lo-shu
square is 10 (1 + 9). Complementary
numbers for this square are 2 and 8, 4 and 6, and 7 and 3. What happens if you only
change some of the complementary numbers? Do you change the properties of the
square if you do not change all the complementary numbers?

It takes a lot of time to make a magic square if you have to choose numbers by trial and
error. This has caused many math enthusiasts through history who enjoyed magic squares
to think about methods for making them. Benjamin Franklin was one such famous magic
square fan. Another man, Antoine de LaLouvere (1600–1664), developed a method for
making magic squares that is called the stairstep method. It works like this:

� Using the number sequence 1 through 9, begin with 1 in the top middle square.

� Place each subsequent number (going in consecutive order) in the space one line
above and one space to the right. If this space is off the square, you find the
corresponding place on your square and put it there.
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70       MAGIC SQUARE IN THE MAKING

� If that space is already filled, you put the next number directly below the number
you just placed.

(The space for 7 is already filled so 7 goes into the block under 6, just as 4 went
into the block under 3.)



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Ye

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

MAGIC SQUARE IN THE MAKING       71

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

YOUR TURN

Try your hand at making your own magic square.

1 Start with a five-by-five square using the numbers
1 through 25. If you are a kindred spirit with
Benjamin Franklin, you might try to devise your
own method. Otherwise, try the stairstep method
on this five-by-five square.

Make a new magic square from the one you just made by
switching all the complementary numbers. Is this like
simply flipping over the square?

2 Now, is it possible to use the stairstep method to
create a four-by-four magic square? Why? Why not?

Can you figure out your own method for making a magic
square with the numbers 1 through 16?

AND ANOTHER THING

I f you are tired of magic squares, how about trying your hand at an antimagic square?
This is a number square in which each of the rows (horizontal, vertical, and diagonal)

totals to a different number.

3 Use the whole numbers 1 through 9 to make a
three-by-three antimagic square.
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THE FOUR-COLOR
MAP PROBLEM

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

22
For centuries, mapmakers followed an unproven rule for maps drawn on flat surfaces or

on spheres. The rule says that you need only four colors to differentiate adjacent countries
or territories so that no two colors share a boundary; they can share vertices or corners
only, a vertex being the point at which lines intersect. This was called the four-color map
problem because, while this was every mapmaker’s rule, no one had been able to prove
that there wasn’t a map somewhere that might require five colors.

Take a look at how the states are colored on a map of the United States. How many colors
are used? Or, look at a globe and see how the countries on a continent are colored. How
many colors are used?

While this four-color rule might not seem so difficult to prove, mathematicians have
struggled for generations to prove it. In 1840, August Möbius raised the question of
whether topologists could find a proof. In 1879, Arthur Kempe, an amateur mathematician,
published a proof, but other mathematicians found an error in it. Kempe’s proof did
lead, though, to a proof that all maps could be colored with a minimum of five colors.
It wasn’t until 1976 and several thousand hours of computer time that a proof for the
four-color map problem was found. There is still no proof that can be done simply with
pencil and paper and there are still some mathematicians who dispute the validity of the
1976 proof.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Try your hand at mapmaking to see how many different colors you need to color
different regions so that no two regions with a common boundary have the same color.

Always try to use the minimum number of colors possible. Try to use only four colors.

This is a map of part of the United States. What is the minimum number of colors you
need to color it so that no two shared boundaries are the same color?

This is another map of part of the United States, but it has been divided as though there
were even more states. What is the minimum number of colors necessary to color this
map now?
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74      THE FOUR-COLOR MAP PROBLEM

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

W ith the five-color theorem, mathematicians were able to prove that the most colors
ever needed to properly color a map is five. Insert imaginary county lines into this

map of Nebraska. Try to divide the state into territories so that you must use five colors.
Is it possible? If you think your lines require five colors, test your lines on a few friends to
see if they can color your map with four colors only.
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WHAT’S KNOT TO LIKE?
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

23
Most of us have been tying knots since we learned how to tie our shoes. How can it be,

then, that knots are a very big topic of discussion and research among mathematicians
who study the field of topology? Topology is the branch of mathematics in which we
look at the properties or characteristics of objects that remain the same even when their
shape is changed—that is, when they are stretched or shrunken.

Knot theory and resulting research into what makes a knot a knot is a new area of study
in the field of topology—which itself is new to mathematics—but knots are very old.
Early humans learned how to tie knots of different types to help do the work that needed
doing. Some early Egyptians were rope stretchers, people who tied knots in ropes to help
them find right angles so they could build pyramids and temples. Sailors have been using
a variety of knots for centuries as they go about the business of sailing, docking, and
anchoring their boats.

So what’s not to like about knots? We all need them and we use them every day for many
things, but what are they? To a mathematician, a knot is a piece of string or cord with
loops and crosses that has no loose ends and that cannot, with pulling and tugging,
be turned into a circle. So you might say that one thing a knot is not is a circle or
“unknotted curve.” Some mathematicians call a circle the “unknot” or the “zero knot,”
because it has no crossings that cannot be twisted or stretched away.

You can make a knot by looping and crossing a piece of string and then joining the ends
of the string together. If this “closed curve” of string remains knotted no matter how you
twist and pull it (so long as the string is not broken), then you have a knot. If you twist
and pull on it and it dissolves into a circle, you have no knot.

For topologists, the simplest knot has three crossings and is called a trefoil knot. A left
trefoil is shown on the left below and a right trefoil is shown on the right.

LEFT TREFOIL KNOT RIGHT TREFOIL KNOT

Do you think they are the same? If you turn them over or manipulate them, can you
make a right trefoil into a left or vice versa?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Early knot researchers had to make their own knots. They tied knots and analyzed them
and by this process figured out which knots were like each other and which were not.

Now mathematicians can use computers to analyze their knotty problems.

When you look at knots to see how they are alike and different from one another, you
can look at a number of characteristics. How many crossings does each knot have? These
are the places at which the string or cord crosses over itself. How many loops are there?
Are the crossings under or over another part of the cord or string?

1 Look at the left and right trefoil knots on page 75. Make samples of them with
cord and tape the ends together. Are they the same knot? Can you manipulate one
to turn it into the other?

2 Look at the two knots below. Make models of them from stiff string or cord. Are
they the same knot? Analyze the knots in terms of loops and crossings. How many
crossings does each have?

3 Here are two more knots. Make them out of stiff string or cord and look at them
closely. Are they the same knot? See how many crossings they have and what is
alike and different about them.

Analyze the knots you have made. Are all of them true mathematical knots, or can you
manipulate them so that they become circles?



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Ye

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

WHAT’S KNOT TO LIKE?       77

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Let’s try some other knotty activities. Here are some further knot explorations:

� Can you make a knot in a piece of string by unfolding your arms? Cross your arms
and fold them on your chest. Now pick up the two ends of a piece of string, one
end with each hand, and pull. What happens?

� Can you make a trefoil knot out of paper? Take a strip of paper and give it three
half-twists and tape it together. Draw a line down one side and find out how many
sides this object has. If your line meets the line where you began, the object has
one side only. Now cut the loop in half right down the middle of the strip so that
the cutting line is right in the middle of the edges the whole way around. Have
you made a trefoil knot? Compare its crossings with your trefoil models.



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Y e

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

78

JORDAN CURVE?
CAN YOU THROW ONE?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

24
Is a Jordan curve some kind of a pitch? And who is Jordan anyway? You may not think

so now, but you do know what a Jordan curve is. It is a “closed curve.” A closed curve is
one that does not intersect itself. The simplest Jordan curve is a circle. The important
feature of the closed curve is that it divides a plane into two distinct places—inside the
curve and outside the curve. The curve was named after a French mathematician named
Camille Jordan who lived from 1838 to 1921. He had the idea that any closed curve
divides a plane into what’s inside and what’s outside of the curve. You might wonder
what made Jordan so special that he got the circle named after him, because if you’d been
around you could have easily told him this.

Well, Jordan wasn’t looking only at circles. Both of the designs below are Jordan curves.
In the circle at the left, point A is outside the curve and point B is inside the curve. In the
circle it is easy to tell which is which. In the case of the very curvy closed curve at the
right, it is much harder to tell.

1 Can you figure out whether points A and B are inside or outside of the curve?

Jordan came up with some very complicated thinking about the ins and outs of the
Jordan curve, and that’s why he got to put his name on it. Let’s find out more ourselves.
For example, is there any way you can tell by looking at the closed curve on the right
whether or not it is a Jordan curve?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Think about a circle on a piece of rubber that you could easily bend, twist, and stretch.
No matter how the line of the circle changes through twisting the rubber, the circle is

still there. If you had put point A inside the circle, it would still be inside the circle no
matter how you twisted, turned, and stretched that rubber.

Not all Jordan curves are as simple as a circle or an ellipse. The curve below looks like a
maze, but it is a Jordan curve. The characteristic that makes it a Jordan curve is that it
divides the plane it is on into two distinct areas (inside and outside the curve).

2 Can you tell which dot is inside the curve? Is dot A? Is dot B?

To find out if a dot is inside or outside the curve without tracing your finger through the
maze, pick a direction from the dot to a point well outside the curve. Do not move
parallel to any side of the curve. Draw a line from the dot to the outside point. A dot is
inside the curve if you can count an odd number of lines from the dot to the outside.
A dot is outside the curve if you can count an even number of lines. Test this first on the
Jordan curve illustrated above and then by drawing your own complicated Jordan curves.
Does the rule work? Turn your Jordan curves into mazes by erasing a spot in the outside
wall of your snake-like curve.
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80      JORDAN CURVE? CAN YOU THROW ONE?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Can a Jordan curve be a polygon? A polygon is a closed figure made by three or more line
segments. Because a line segment is different from a curve, then perhaps a polygon

cannot in a strict sense be a curve, but mathematicians have talked about Jordan polygons.
Look at the spiky, maze-like creation illustrated below. It is a many-sided polygon that
looks like a maze, just like a Jordan curve can look like a maze.

3 Will the method you used to find if dots are inside or outside of the figure work
on this polygon? Try it, and see.

Did the method work for this polygon? Make up your own many-sided polygon and test
the result. Does it always work? Now, turn your spiky creation into a maze.
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AN A-MAZE-ING THING
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

25
People of all ages do pencil-and-paper mazes. A maze is like a network in that it is a

path, but in a maze the correct path leads you to your goal—either a place in the
middle of the maze or a way out. To do the maze properly, you need to reach your goal
without crossing any lines and without picking up your pencil.

Mazes have been around since the time of ancient cultures. One of the oldest known
mazes is found on a coin from Knossos, Crete. Stone carvings in Ireland show mazes that
are more than 3,000 years old. The Greeks loved mazes, and, according to one Greek
myth, the Minotaur was housed in a maze. Mazes are found in African and Native
American textile designs and in classic English gardens.

COIN DESIGN FROM ANCIENT CULTURE NATIVE AMERICAN NAVAJO
AT KNOSSOS, CRETE TEXTILE DESIGN

ENGLAND’S HAMPTON COURT GARDEN MAZE DESIGN

Can you find your way through these mazes?
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82       AN A-MAZE-ING THING

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

There are many ways to design a maze. One way is to create a traversible network and
turn it into a maze. A traversible network is one that, by starting at one place on the

network, you can trace the entire set of lines going through each arc (or line) only once
without lifting your pencil. (For more information about networks, see “Networks Not
on Television,” page 47.)

1 Can you figure out a way
to change these networks
into mazes? Remember to
include a goal and create
some dead ends.

As you think about how to make your own maze, it sometimes helps to look at famous
mazes. Look at the Hampton Court maze on page 81. What aspects of the maze are
symmetrical? What aspects are asymmetrical?

2 Can you build mazes from these basic symmetrical designs?

Build your maze by connecting the lines and dots to one another in some way.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Look at the Knossos coin maze design on page 81.

3 Can you figure out if the maze is a Jordan curve? (For information on Jordan
Curves, see “Jordan Curve? Can You Throw One?” on page 78.)
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IS IT PROBABLE?
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

26
Western mathematicians first began to formally investigate probability in the 1600s.

Probability is the study of chance. They began their studies with coins and dice
because there were a limited number of results possible from the throw of coins and their
experiments and observations would be easy to undertake. Think about it.

1 If you flip a coin, how many possible results are there? When you toss a die, how
many possible results are there?

Blaise Pascal, who lived from 1623 to 1662, was a French mathematician and philosopher.
Pascal created a number triangle that can be used to identify the probability of a certain
outcome or result occurring when, for example, coins are tossed. It appears that, as early
as the eleventh century, both a Chinese mathematician named Chu Shih Chieh and a
Persian poet named Omar Khayyam were aware of and used the same triangle.

The triangle works as shown in this drawing:

When you toss one coin, there is one chance the coin will fall heads and one chance the
coin will fall tails. This means there is one out of two chances that, if you guess heads, the
coin will fall heads. When you toss the coin twice, there is a one in four chance that you
will get heads each time (that is, one chance that you will get two heads, one chance that
you will get two tails, and two chances that you will get one head and one tail each time).
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

There are many patterns to the numbers that appear on Pascal’s triangle. Look at the
triangle below.

2 Can you figure out the number of possible outcomes for each group of coins tossed?

If you can figure out the pattern of the numbers inside the triangle, the total outcomes
are easy. As you look at the triangle below, remember that on the left side of the triangle
the numbers tell you how many coins are tossed. On the right side of the triangle, the
numbers tell you the total possible outcomes when you toss that number of coins. The
numbers inside the big triangle tell you how coins will fall—for example, if you toss two
coins, there is one chance both will fall heads, one chance that both will fall tails, and
two chances that the coins will fall one head and one tail.
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86      IS IT PROBABLE?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Over and over again in mathematics, you can see how one number pattern relates to
another. One such pattern, called the Fibonacci number sequence, is one in which a

series of numbers is made by adding the two preceding numbers to get the next number.
The series looks like this:

1, 1 (0 + 1), 2 (1 + 1), 3 (1 + 2), 5 (2 + 3), and so on

3 If you add the numbers on the diagonal lines drawn through Pascal’s triangle,
what number sequence do you find? Do this on the Pascal triangle you completed
on page 85.

4 Can you find any other number patterns in the triangle?
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CAN YOU GAUSS
THE ANSWER?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

27
Carl Friedrich Gauss was a famous mathematician who lived from 1777 to 1855. He

discovered or found equations for many interesting mathematical principles. Finding
equations that prove something about how numbers work is a big part of what
mathematicians do. Their equations are not simply numbers that you add, divide, or
multiply. Their equations are about the relationship between unknown numbers or about
numbers that are different, depending upon the size or shape of a thing.

Gauss had amazing mathematical skills that were obvious even when he was very young.
There is a story about his experiences at age 8 in elementary school that illustrates his
prowess. One day his teacher asked the class to find the sum of all the numbers 1 through
100. While the other children sat there busily scratching out sums and adding more
sums, Gauss looked off in a world of his own. His teacher scolded him to get to work to
which he replied that he already had the answer. He had figured it out in his head.

1 Can you figure out how Gauss did this problem in his head? If you figure out his
method, you may be able to do it without pencil and paper, too.

Gauss explored many areas of mathematics. Although the normal distribution curve was
discovered in the late 1600s, it was Gauss who developed one of those famous mathematical
equations for it. The curve is now called the Gaussian curve. It looks like this and is the
same curve that shows the possible outcomes when a pair of dice is thrown.
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88       CAN YOU GAUSS THE ANSWER?

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

YOUR TURN

I t’s time to try your hand at some of those puzzling math questions like the one that
Gauss’s teacher posed to his class generations ago.

THE MONEY PROBLEM
Here is a classic puzzle that appears in many books. Look at the letters below.

2 Can you figure out what numbers to insert for the letters to make the equation
work? For each letter, only one number can be used. For example, anywhere that
E appears, you must use the same number each time.

S E N D

+ M O R E

M O N E Y

THE NUMBERS GAME
A fun mathematics game that works well in years before 2000 is to take the numbers in a
year and use those numbers to create equations that equal all of the numbers from 1 through
100. For example, using 1993, 1 = -1 – (9/9) + 3, 2 = -1 x (9/9) + 3, 3 = [(1 + 9) – 9] x 3,
and so on. A classic shorter version of this puzzle is the four 4s puzzle. For each number
1 through 10, write an equation using only four 4s but using any operations you choose.
As an example for an equation for zero, you could use 4 – 4 + 4 – 4 = 0. Another version
of this puzzle is to substitute five 2s for your 4s.

AND ANOTHER THING

Sometimes math doesn’t look like math because there are words, rather than numbers,
involved. To figure out the words, though, you need to use your thinking skills, and

math is always about thinking. So here’s something like math fun, but involving words.
Let’s not call them word problems. Yuck! Call them funzles—fun puzzles.
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Look at each word(s) picture and figure out a familiar phrase or word from the
arrangement of the words. For example,

is “long division.”

3 Can you figure out the funzles below?

4 Can you make up five funzles of your own? Here are some phrases to get you
started: “sleeping on the job” and “slowdown.”

D
I
V
I
S
I
O
N
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KEEPING COUNT
ON A QUIPU28

The vast empire of the Incas spanned 2,250 miles
of the South American Andes mountain range.

The empire reached the height of its power in the
late fifteenth and early sixteenth centuries. Its
accomplishments included a network of more than
10,000 miles of roads for communication and
trade, use of terrace mountain farming techniques, and the building of great earthquake-
resistant palaces and temples made by tight-fitting but irregularly shaped blocks.

Interestingly enough, despite these significant accomplishments, the Incas had no written
number system. This did not prevent them from keeping elaborate records of the doings
and events of every part of the empire.

Wise men called armantus kept numerical records of crop production, population changes,
taxes, and the like on sets of knotted ropes called quipus. The type of information each
system of knots carried was indicated through the color, thickness, and length of the
ropes used. For example, a yellow rope might represent the maize crop. The Incans used
a decimal system to record the numbers on their quipus with no knot representing zero.
Historians are not sure how the decimal system was implemented on the ropes.

What number system would you use if you were making quipu records? Let’s look at the
number 264 to see how it would look in both the base 10 and base 2 number systems.

1 Based on the example above, how many ropes would you need to knot under
base 10 to show 264?

2 How many under base 2? Which seems more practical?

Base 10 Base 2
2 6 4 256 128 64 32 16 8 4 2 1

2 0 0 1 0 0 0 0 1 0 0 0

6 0  0
 0

4  0
8

2 6 4  0
 0
 0
 0

256
264

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○



Fr
om

 M
at

h 
Am

az
em

en
ts

, C
op

yr
ig

ht
 ©

 G
oo

d 
Ye

ar
 B

oo
ks

. T
hi

s 
pa

ge
 m

ay
 b

e 
re

pr
od

uc
ed

 fo
r c

la
ss

ro
om

 u
se

 o
nl

y 
by

 th
e 

ac
tu

al
 p

ur
ch

as
er

 o
f t

he
 b

oo
k.

 w
w

w
.g

oo
dy

ea
rb

oo
ks

.c
om

KEEPING COUNT ON A QUIPU       91

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Let’s assume the Incas tied knots to represent numbers this way: ones—far right,
tens—to the left of the ones, hundreds—to the left of the tens, and so on. This

quipu represents the ears of maize grown in a farmer’s field.

3 If you use the system described above, how many ears of maize were grown
according to the quipu record?

_____ _____ _____ _____

Make your own quipu by tying strings or colored yarn onto a cord. Tie on the population
of a small Incan village in which 1,431 men, 2,123 women, and 1,601 children live.
Make the cords different colors to represent each group of people represented.

4 Try another recording challenge. Tie a record of knots in base 2, rather than base 10.
Base 2 is the system upon which computers operate. Make a new quipu and tie on
the number 45 in base 2. Hint: The number 10 in base 2 looks like this: 1010.
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92      KEEPING COUNT ON A QUIPU

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

W ith limited writing tools available, ancient peoples were very creative about how they
dealt with number information. For example, in ancient Mesopotamia, marketplace

sellers and tax collectors had to figure out a way of adding and subtracting numbers
without writing them down. This was because writing was cumbersome—using sticks to
make indentations in soft clay tablets. For on-the-spot adding, they probably used a
method of grooves and pebbles that was the forerunner of the abacus. Assuming they
used a base 10 system, they would show the number 329 in three grooves.

Make your own grooves in sand or dirt or fill a casserole dish with cornmeal or salt. You
are a tax collector and need to total a farmer’s wheat crops. You need to add 482 sheaves
to 329. Put pebbles or beans in each groove to total 329 as shown above. Put beans
totaling 482 in the appropriate grooves along with the 329 shown. Now move the beans
around to show the total. Do this by deciding how many are too many beans in a
particular groove, moving excess beans from ones to tens to hundreds, and so on. For
example, if you have 11 beans in the ones groove, you move 1 bean to the tens groove,
leave 1 bean in the ones groove and discard the other 9 beans. Then look at the tens
groove and adjust it.
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THE SYMMETRY OF THE
TESSELLATED PLANE

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

29
M . C. Escher, a Dutch artist, became famous for his tessellations of every imaginable

creature and design. On a trip to Spain, he visited the Alhambra, a Moorish fortress
housing palaces and gardens of the Moorish leaders. He became fascinated with the
intricate mosaic designs created by Islamic artists. These artists were precluded by their
religion from making decoration using animal or human images. As a result, they
experimented with a wide array of geometric designs. Inspired by them, Escher spent
hours copying the designs so he could study how they worked.

What is a tessellation? A tessellation is a pattern of shapes that completely covers a plane
without any of the shapes overlapping or leaving open space between them. Certain
polygons tessellate a plane without any gaps, as shown in these illustrations.

1 Can one of these figures look three-dimensional?

2 From the designs shown above, we know that certain figures with three, four, and
six sides tessellate a plane. Can you figure out why?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

A  regular pentagon is a pentagon, the sides of which are all the same length.

3 Can a regular pentagon tessellate a plane?

Try it with a piece of graph paper, a pencil, and a protractor. On a piece of graph paper,
draw a pentagon. Now, try to figure out a way to connect other pentagons to it so that
the paper is completely covered with pentagons with no gaps and no overlaps. Can you
do it? Why? Why not?

Let’s see what the difference is between the figures on page 93 and the pentagon. Measure
the angles of the triangle, hexagon, and square on page 93. How do the individual angles
relate to the 360 degrees of a circle? Measure and total the angles at a vertex where each
of these shapes join. How does the total of these angles relate to the 360 degrees of a
circle? Now, what is the angle of the pentagon? Is there a different relationship to the
360 degrees of a circle?

Let’s look more closely now at quadrilaterals. All the quadrilaterals we have looked at so
far were parallelograms—meaning that their opposing sides were parallel to each other.
Can you make another kind of quadrilateral that does not have parallel sides? Draw a
scalene quadrilateral—one with no angles that are the same. See if you can tessellate a
plane with the quadrilateral you drew.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Now that you have an idea why some polygons tessellate a plane and others don’t, try
your hand at making an Escher-style tessellation. To do this, begin with a square. If

you change one side of the square by deleting something, you must add that something
back to the square on the opposing side so that the total area of the square remains the
same and each piece will fit into the next.

Can you apply some of the same principles to create a new tessellated shape from a
triangle?
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A NOT-SO-REGULAR GUY WHO PROVED
THERE WERE FIVE REGULAR SOLIDS

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

30
P lato was a famous Greek philosopher who lived from 427 B.C. to 347 B.C. He was a

very busy guy who was thinking all sorts of deep thoughts about what is real and what
is not real. One of the things he thought about along the way was solid shapes. When he
thought about shapes, he wasn’t so worried about rocks, seeds, sticks, and pots. He knew
these were solids, but he was interested in solids of certain shapes that are called regular solids.

What is a regular solid? It is a three-dimensional shape—a polyhedron—the faces of which
are regular polygons of the same shape and size. What is a regular polygon? It is a two-
dimensional shape, the edges or sides of which are all the same length and the angles of
which are all the same such as equilateral triangles, squares, and regular pentagons. What
Plato figured out is that there are exactly five regular solids that can be made with these
regular polygons. Today we call them the platonic solids.

What are the five platonic solids? They are the tetrahedron (four faces), the hexahedron
or cube (six faces), the octahedron (eight faces), the dodecahedron (twelve faces), and the
icosahedron (twenty faces).

TETRAHEDRON HEXAHEDRON (CUBE)

DODECAHEDRON ICOSAHEDRON

OCTAHEDRON
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Here are the patterns for making a dodecahedron and an isocahedron.

DODECAHEDRON PATTERN ICOSAHEDRON PATTERN
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YOUR TURN

Making patterns to create the regular solids can be fun and challenging.

1 Can you design patterns for making a tetrahedron, hexahedron, and octahedron?

Use the regular polygon shape that makes up the solid to create a pattern that you can
trace onto heavy paper or cardboard to make a three-dimensional solid.

To create your patterns, you need graph paper, a pencil, and a ruler. Let’s begin with the
tetrahedron. Look at the picture of this polyhedron’s shape. How would you lay out the four
triangles on paper so that they could be cut out in one piece and folded to form this shape?

Begin with the base. Draw it on your graph paper. Then figure out how the other three
faces relate to that base face. Once you have created the pattern for the four-faced solid,
try to create patterns for the other platonic solids.

As you look at your platonic solids, can you come up with any numerical pattern for the
way the number of faces and corners (or vertices) relate to the number of edges in these
solids? To get you started, consider the tetrahedron and the cube:

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2 What is always true about the relationship between the sum of the total number of
faces and corners to the total number of edges? Make up a formula that describes
the relationship.

Number of Faces Number of Corners Number of Edges

Tetrahedron 4 4 6

Cube 6 8 12
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

V isualize a six-faced solid made with equilateral triangles.

3 Can you figure out how to make a pattern for such a polyhedron? Look at the
tetrahedron to get you started.

Go on a platonic solid search. What shape are salt crystals? What shape are sugar crystals?
Check out the Egyptian pyramids.
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WHAT PYTHAGORAS SAID
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

31

Pythagoras wondered if his formula

a2 + b2 = c2

worked for all right-angle triangles. Pythagoras proved that it did, and you can too.

The Greek philosopher and mathematician Pythagoras (580 B.C.–500 B.C.) gave the
world one of the most famous theorems (or rules) of mathematics. He was puzzled by

the Egyptian right triangle.

What is the Egyptian right triangle?
In ancient Egypt, architects and
builders needed to use right, or
90-degree, angles in building
structures such as pyramids and
temples. The tool they used to find
the proper angle was made of three
knotted ropes. Rope stretchers
pulled three ropes to form a right-
angle triangle—one rope knotted
to show three units, one knotted to
show four units, and one knotted to show five units. The angle made by the intersection
of the two short sides of the triangle was always a right angle.

In looking at the Egyptian right-angle triangle, Pythagoras found that the squares of each
of the short sides totaled the square of the long side.

5 x 5 = 25

5 squared = 25

4 x 4 = 16

4 squared = 16

3 x 3 = 9

3 squared = 9 9 + 16 = 25

a
bc
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YOUR TURN

Take a look at this geometric design, which is a series of squares divided into triangles.
Can you use it to prove that Pythagoras’s theorem works for right-angle triangles with

two equal sides? Can you do Pythagoras’s proof with these shapes, which might be found
in any common floor tile? Make the design in the illustration below (at right) on graph
paper and cut out the triangles to prove Pythagoras right.

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

All the triangles are right-angle triangles having two equal sides. This is because diagonals
of a square are perpendicular to each other or at 90-degree angles. Can you see that each
of the triangles numbered 1 through 8 has the same area? This is because all of these
triangles are the same size.

Now look closely at triangle abc. When triangles 1 and 2 are taken together, they are the
square of side a. Similarly, triangles 3 and 4 are the square of side b and triangles 5, 6, 7,
and 8 are the square of side c. Do triangles 1, 2, 3, and 4 have the same area as triangles
5, 6, 7 and 8? In other words, when put together, are triangles 1, 2, 3 and 4 equal to
triangles 5, 6, 7, and 8? If they are, you have proved the Pythagorean theorem for right
triangles with two equal sides.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Okay, so Pythagoras was right about the right triangle with two equal sides, but does the
theorem really apply to all right triangles? You can prove that it does.

� On a piece of graph paper, make a square, each side of which is 2 inches in length.

� Draw two straight lines that intersect at right angles so that, within the framing
square, you have a large square (square B), a small square (square A), and two
equal rectangles (rectangles D and E).

� Now divide your two rectangles into triangles by drawing one diagonal line
through each. Label them as shown in the illustration below.

Square A shows the square of side a on triangles 2 and 3. Square B shows you the square
of side b on triangles 2 and 3. How can you find the square of side c? It should equal the
combined area of squares A and B if Pythagoras was right. Let’s find out.

On your graph paper, draw a second framing square the same size as the first one you
drew. Cut out triangles 1, 2, 3, and 4, and place them in the corners of the framing
square so that they form an interior square (square C).

Doesn’t this square have the same area as the area of squares A and B taken together?
Voilà! You have proven the Pythagorean theorem. Show that Pythagoras was right for any
right triangle by doing this activity again, this time placing your intersection point at a
different place within the framing square.

A D

E B
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THE GOLDEN RECTANGLE
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

32
The golden rectangle is a rectangle of a certain shape that, through history, has been

considered very pleasing to the eye. While there is no evidence that the ancient Greeks
thought about this rectangle, they used it in building the Parthenon, a temple that stands
on the Acropolis in Athens, Greece. The Parthenon has long been lauded as one of the
most beautiful structures in the world. Built in the fifth century B.C., the proportion, or
overall size and shape of the structure of this building, is based upon the root 5 rectangle,
now known as the golden rectangle.

The golden rectangle is based upon the golden mean, which has also been called the
golden section or golden ratio. The beauty of the rectangle and the related ratio is seen
again and again in architecture, art, nature and even the proportions of human anatomy.

Many artists, such as Leonardo da Vinci and Piet Mondrian, have used it in their
paintings. It is said that if you draw a rectangle around the face of da Vinci’s “Mona
Lisa,” the rectangle is golden.

Okay, but what is a golden rectangle? It is a rectangle like any other, but it has specific
proportions. It's not too thin. It's not too long. It's just right. The sides of this “just
right” rectangle are made when its length is a little more than 11/2 times its width-that is,
the ratio of width to length is approximately 1 :: 1.618.
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104       THE GOLDEN RECTANGLE

Let’s see how to make a rectangle with this proportion. If you could make a line segment
that was divided into the golden section, you would have the length and width you need
to make the rectangle. A golden section looks like this.

In this line segment, the length of BC is to the length of line segment AB as the length of
AB is to the length of AC. Mathematically, you write it in this way:

/BC/ / /AB/ = /AB/ / /AC/

Said another way, the smaller part, BC, is to the larger part, AB, as the larger part, AB, is
to the whole, AC.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

The golden ratio and the golden rectangle are seen in the paintings of many great artists.
Something about the shape is aesthetically pleasing to human eyes. Find some of the

later artworks of twentieth-century Dutch painter Piet Mondrian. See if you can find
golden rectangles and golden ratios in the structure of his geometric paintings. Create
your own geometric designs. In one, use the golden ratio and golden rectangle. Try to
avoid these proportions in another. Which one appeals more to your eye?

YOUR TURN

How can you make a golden rectangle without measuring? You can make one in this way:

� Make any square ABCD.

� Bissect the square with line segment JK.

� Make an arc using a compass. The center
of the arc is K and the radius is KB.

� Make the arc into a semicircle ending at G.

� Draw the arc downward through line DC
so that you can extend DC to point E to
make DE.

� Draw a ray perpendicular to DE so that
the extension of AB intersects it at F.

� Now you have golden rectangle AFED
and golden section CE is to DC as DC is
to DE.

1 Look at this picture of the Parthenon.
Can you figure out how the Parthenon
uses the golden rectangle within its overall
structure? Specifically, can you find two
large golden rectangles and four small ones?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

GOING AROUND
IN CIRCLES33

S ince the time of the ancients, geometric shapes and their relationships have fascinated
math thinkers and philosophers. When they tried to figure out how geometric shapes

related to one another, they were limited in their tools. They had no computers. They
had no calculators. They didn’t even have rulers with measuring lines. When they wanted
to solve mathematical problems, they had to do so with only a straightedge (sort of like a
ruler but with no measuring lines) and a compass-like device (a stick with a piece of
string). Of course, they also had their brains. They thought about these problems a lot.

The fact that the ancients had limited tools didn’t stop them from thinking up very
tough problems. In fact, there are many famous problems that the thinkers of antiquity
struggled with, which continued to puzzle great thinkers for hundreds of years.
Surprisingly, or perhaps not so surprisingly, mathematicians found that there were no
easy answers to some of these problems.

One of the most famous of these problems has been called “squaring the circle.” In other
words, how can you make a square with the same area as any given circle?

In an effort to solve this and other math problems, great math thinkers through history
made many interesting discoveries—even though many of these discoveries did not help
solve the problems they were investigating. Often, the problems the ancients thought of had
to be solved using tools they did not have at their disposal, or they needed higher math skills
developed over time such as a student of advanced math analysis might possess today.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

Even though you might not be able to solve the problems that stumped Nicomedes,
Archimedes, and other great Greek and Roman thinkers, you can use a straightedge

and compass to have fun solving some other problems. Remember, the ancients did not
have rulers; they had straightedges.

1 Here is a circle problem that you might enjoy. If you know only the circumference
of a circle such as the circle below, how do you find the center point (or origin)
using only a compass and straightedge?

Hint: Begin by finding a point on the circumference of the circle and drawing another
circle from that point that intersects the first circle in two places.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

Another great ancient thinker named Apollonius of Perga had his own problem with
circles. His problem came to be known as—can you believe it—Apollonius’s problem:

For any three circles, find a fourth circle that is tangent to all three. An example is the set
of circles below. On the left are the three circles to be joined by the fourth. On the right
is the fourth circle tangent to all three.

2 Can you find one or more fourth circles that solves Apollonius’s problem for the
set of three circles below?
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A FIBONACCI SEARCH
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

34
A famous mathematician named Leonardo of Pisa (Pisa, Italy, was his birthplace) was

born in about 1175 and lived until about 1240. When he wrote his books and
treatises on math, he used the name Fibonacci and he is best known by this name.

As a young person, Fibonacci traveled with his father, who was a customs agent. In these
travels, he became familiar with Hindu-Arabic numerals, which used both a zero and
place value. He thought this number system was far more practical than the Roman
numeral system that was then still in use in Italy. What do you think? Is it easier to figure
out the sum of 36 + 14 or the sum of XXXVI + XIV? Fibonacci wrote about the Hindu-
Arabic number system and helped influence its adoption throughout Italy and, ultimately,
the Western world.

1 Fibonacci also like to think up interesting problems that involved math. Through
one of these problems, he discovered a sequence of numbers that is very interesting.
An example of the Fibonacci sequence goes like this: 1, 1, 2, 3, 5. Can you figure
out the next number in the sequence?

The Fibonnaci sequence is the series of numbers made by adding the two prior numbers
to get the next number, beginning with 0 + 1. Now can you figure out the next number
in the Fibonnaci sequence above?

2 Here is another sequence of numbers made the same way: 4, 4, 8, 12, 20, 32.
What is the next number in this sequence?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○YOUR TURN

The Fibonacci numbers occur surprisingly often in the world around us. Look for
Fibonacci numbers on a piano. Find middle C. To the right of middle C, how many

black keys are grouped together?

How many black keys are there in the next group? Look at the black and white key
pattern and see how many Fibonnaci numbers you can find.

Do a plant search for Fibonacci numbers on living plants. Look at how the leaves grow.
Do they spiral around the stem? Moving upward vertically on the stem, how many leaves
are there before a leaf appears on the stem directly above the first leaf you counted? In
what number pattern do the twigs grow from the branches of a tree or shrub? How many
petals are on the flowers? Look at several plants. How many seem to grow in Fibonacci
numbers?

Take a look at an artichoke, a pineapple, or a pinecone. Look for the spiraling pattern of
the petals, scales, or bracts. Do the rows of these coverings occur in Fibonacci numbers?

Look at the bones of your body. Can you find Fibonacci number relationships in the
bones of your hands? Your feet?
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○AND ANOTHER THING

A little problem about rabbits started Fibonacci on his number search. Here is how the
problem went:

3 If you began the year with a pair of rabbits, how many pairs of rabbits would there
be after a year if you assume that every month each pair of rabbits produces one
new pair of rabbits and each of these rabbits bear young two months after birth?

You can begin by drawing a diagram to find the answer, but soon your picture will
become unmanageable. Can you find the answer by using what you know about the
Fibonacci number sequence?
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FROM NUMBER PLACE TO SUDOKU—
EVERY NUMBER HAS ITS PLACE

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

35
Games and puzzles come and go in popularity. Some games that have been around for

years suddenly become all the rage. One such game is a little like a magic square, but
then again, not like it at all. It is known as Sudoku.

Dell Magazines originated the first Number Place puzzle more than 25 years ago. The
puzzle later caught on in Japan with the name Sudoku, and now puzzle lovers worldwide
play Sudoku. Su means “number” in Japanese. Doku loosely means “bachelor” or “single.”
Sudoku can be translated loosely as “single number.”

A Sudoku puzzle contains nine
3 x 3 squares inside a 9 x 9 square
and looks like this:

The small squares are called cells. The 3 x 3 squares are called squares. A horizontal row of
nine cells is called a row. A vertical line of nine cells is called a column. The entire grid is
called the puzzle.

The rules are simple. Place the
digits 1 through 9 in the cells so
that each digit occurs only once
in each square, row, and column.
Here is a finished puzzle:

Other versions of this puzzle have appeared through the years. Wordoku is a twist on
Sudoku, using letters instead of numbers. You can also substitute shapes for numbers.
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○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

YOUR TURN

Now try a few Sudoku puzzles on your own.

For more puzzles, look on the Internet, in newspapers and magazines, and in bookstores.
Sudoku is everywhere!

AND ANOTHER THING

Do you use the same strategies to solve the puzzle when you use shapes as when you use
numbers? Try this shape Sudoku puzzle.
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ANSWER KEY

For any activity not shown here, answers may vary.

1 FACTORING, GEOMETRIC SHAPES, AND PRIME NUMBERS
1. The factors for 5 are 1 and 5. The factors for 12 are 1, 12, 2, 6, 3, and 4.

2. Yes, 5 is a prime number because it has only two factors, itself and 1, but 12 has six
factors, so it is not a prime number.

2 THE SHAPE OF NUMBERS—IT’S GREEK TO ME
1. When you add consecutive triangular numbers, you get a square number.

2. When you add consecutive odd numbers, you get square numbers:
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16 and so on.

3. A cubic number is any number multiplied by itself twice. It is shown with
exponents as in the case of 2 x 2 x 2, or 2 to the third power (23), or 8.

3 ERATOSTHENE’S PRIME NUMBER SIEVE
1. The prime numbers between 1 and 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

4 A HEXAGON HERE, A HEXAGON THERE
1. When bubbles join in foam, they coalesce into hexagonal shapes.

5 BONING UP ON RATIOS
Ratio answers are reduced to their smallest number.

1. Ratio of upper arm bones to lower arm bones, 1:2

2. Ratio of finger phalanges to toe phalanges, 1:1

3. Ratio of ankle bones to toe bones, 1:2

4. Ratio of nasal bones to total skull bones, 1:6

5. Ratio of ankle and instep bones to toe bones, 6:7

6. Ratio of lumbar vertebrae to sacrum vertebrae, 1:1

7. Ratio of adult bones to bones in a baby, 206:350

8. Rounded (nearest 50) ratio of adult bones to bones in a baby, 200:350

9. Quick useful ratio of adult to baby bones, 4:7

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
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6 IS SYMMETRY JUST SYMMETRY?
1. Equilateral triangle: rotate 120 degrees; square: rotate 90 degrees; hexagon: rotate

60 degrees

7 THE MAGIC LINE—A MATTER OF SYMMETRY?
Magic lines of magic squares.

ANCIENT TIBETAN SEAL DURER’S MAGIC SQUARE

1. Rotational symmetry; 180 degrees

BEN FRANKLIN’S MAGIC SQUARE

2. Reflective symmetry
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9 STRAIGHT TO THE ARC
1. The arc of a circle is formed using the 90-degree angle.

2. Yes. Square: reflective and rotational symmetry

3. Equilateral triangle: reflective and rotational symmetry

4. Eight-point star: reflective and rotational symmetry; broken cross design: rotational
symmetry

10 ONE SIDE OR TWO—THE PAPER BAND MEETS AUGUST MÖBIUS
1. Two sides

2. One side

3. Two bands with two sides each

4. Here is how you cut the Klein bottle in half to make a Möbius strip:

14 THE GEOMETRIC FOLD—SHAPES WITHIN SHAPES
1. To make a pentagon with a 1-by-10-inch paper strip, fold it into a simple knot.

2. Fold an ellipse by placing a dot on the circle. Do not place the dot in the center.
Work your way around the circle, folding the circle’s edges to the dot until you
have made your way around the circle.
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16 NETWORKS NOT ON TELEVISION
1. The traversible networks of the group shown are the top left and bottom left figures.

2. From left to right, the first and third figures are traversible and the second and
fourth figures are not.

3. Turn the Konigsberg bridge path into a network. Each area of land becomes a point
or vertex. Draw lines from each vertex. The resulting network has four odd vertices
and is not traversible.

18 PUZZLES AND GAMES—THE TOOTHPICK WAY
1. A subtraction puzzle

2. Lose that square

3. A triangular puzzle

4. Triangles and squares
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5. Move one toothpick to solve the equations.

6. Move four toothpicks to create three triangles.

7. Move four toothpicks of the spiral to make three squares.

8. Move three toothpicks to create three squares.

18 PUZZLES AND GAMES—THE TOOTHPICK WAY  (continued)
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9. Create four more squares with twelve toothpicks. Remove four toothpicks to
leave nine squares.

10. Turn the triangle upside down by moving three coins.

11. Move one coin to form two rows of four coins.

12. Rearrange the coins to form a square with five coins on each side.

18 PUZZLES AND GAMES—THE TOOTHPICK WAY  (continued)
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19 UNPUZZLING THE TANGRAM
1. Use these directions for making a tangram puzzle.

TRIANGLE IRREGULAR HEXAGON TRAPEZOID

a. Find the midpoint between A and D and label it E. Then find the midpoint
between D and C and label it F.

b. Find the midpoint between E and F, label it G, and connect it with B.

c. Connect A and C. Find the midpoint of AC, and label it H. (This is where BG
intersects AC.)

d. Find the midpoint between A and H. Label that midpoint I, and connect it
with E.

e. Find the midpoint between H and C, label it J, and connect G with J.

2. Solutions to six polygonal shapes:

RECTANGLE PARALLELOGRAM IRREGULAR PENTAGON
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3. Solution to tangram puzzle:

4. Solutions to tangram animal puzzles:

WATCHFUL VULTURE ICE-SKATING GOOSE

5. Solutions to three more puzzles:

GOOSE DINOSAUR SEA MONSTER

COMPUTER DESK

NAPPING LIZARD LONELY BEAR

19 UNPUZZLING THE TANGRAM  (continued)
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6. Sample eight-piece rectangular puzzle

20 HOW THE EGYPTIANS MULTIPLIED
1.     +     +

21 MAGIC SQUARE IN THE MAKING

1. 17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 19 25 2 9

2. The stairstep method works only on odd magic squares—that is, squares that are
three-by-three, five-by-five, and so on.

3. 6 2 5

3 1 4

8 7 9

19 UNPUZZLING THE TANGRAM  (continued)

1
2

 1
16

1
4
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23 WHAT’S KNOT TO LIKE?
1. The left and right trefoil knots are not the same knot.

2. These are the same knot. The knot has four crossings.

3. These are not the same knot. The knot on the left is a granny knot. The knot on
the right is a reef knot.

24 JORDAN CURVE? CAN YOU THROW ONE?
1. In the spiral-shaped Jordan curve, point B is inside the curve and point A is outside

the curve.

2. In the odd-shaped Jordan curve, point A is inside the curve and point B is outside
the curve.

3. The method works on polygons. In the polygonal Jordan curve, point A is inside
the curve and point B is outside the curve.

25 AN A-MAZE-ING THING
1. Sample maze designs for the networks
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2. Maze solution (Both designs can make this maze.)

3. The Knossos maze is not a Jordan curve, because it contains an intersecting line.

26 IS IT PROBABLE?
1. When you toss one coin, there are two possible results. When you throw a single

die, there are six possible results.

2. Completed Pascal triangle

25 AN A-MAZE-ING THING  (continued)

3. If you add the numbers on the diagonal lines drawn through Pascal’s triangle, you
get a Fibonacci number sequence.

4. Some things to look for in Pascal’s triangle: 1) Each horizontal row is a palindrome,
and 2) the total possible outcomes double with each coin you add to the toss.
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27 CAN YOU GAUSS THE ANSWER?
1. To add 1 through 100 quickly, pair each number 1 + 100, 2 + 99 and so on

to 50 + 51. Each pair totals 101 and there are 50 pairs. The answer is 5,050.

2. SEND 9567

+ MORE 1085

MONEY 10,652

3. Funzle solutions:

reading between the lines

life after death

split level

reading backward

long underwear

tree house

4. sleeping on the job: sleeping

the job

slowdown: S
L
O
W

Consider these additional funzle ideas:

� Write the word game using nothing but stars = “all-star game.”

� Write the word teen using nothing but numeral 6 = “sixteen.”

� Write the word cycle twice = “bicycle.”

28 KEEPING COUNT ON A QUIPU
1. 3

2. 9

3. 2, 583 ears of maize

4. Quipu knots for 45 in base 2 looks like this:
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29 THE SYMMETRY OF THE TESSELLATED PLANE
1. When shaded, the diamond tessellation looks three-dimensional.

2. The angles at the vertex of polygons that will tessellate a plane total 360 degrees.

3. Each angle of the equilateral triangle, regular hexagon, and square can be divided
into 360 degrees with no remainder. When the shapes are joined at a vertex, the
angles at the vertex total 360 degrees. The angles at the vertex of the pictured
pentagons do not total 360 degrees. Accordingly, a regular pentagon cannot
tessellate a plane.

30 A NOT-SO-REGULAR GUY WHO PROVED THERE WERE FIVE REGULAR SOLIDS
1. Patterns for regular solids

PATTERN FOR TETRAHEDRON PATTERN FOR HEXAHEDRON

PATTERN FOR OCTAHEDRON
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2. A formula for the faces/corners/edges question is as follows:

number of faces + number of corners = number of edges minus 2

The total number of edges is two less than the combined total number of faces and
corners.

3. Pattern for six-faced solid made from equilateral triangles

32 THE GOLDEN RECTANGLE
1. How the Parthenon uses the golden rectangle
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33 GOING AROUND IN CIRCLES
1. For this one, you need only a compass to take the following steps.

i. Draw a circle. Make a circle starting at any point A on the circumference of
the circle. Identify the two points where this circle intersects the first circle as
points B and C.

ii. Use points B and C as the center to make arcs with a radius of AB and AC.

iii. Mark as D the point at which these arcs intersect inside the original circle.
Make a circle with the radius DA.

iv. Draw line segment DA and continue it until it intersects the side of the circle
opposite of A. This intersection point E will be the center (or origin) of the
original circle.

2. Sample solutions to Apollonius circle problem:

How many more can you find?
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34 A FIBONACCI SEARCH
1. 8

2. 52

3. The answer to the rabbit problem is 377 rabbits.

35 FROM NUMBER PLACE TO SUDOKU—EVERY NUMBER HAS ITS PLACE
The answers to the Sudoku puzzles:

The answer to the Sudoku shapes puzzle:
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arc: part of the circumference of a circle

concave: inward curve

congruence: a condition in which objects are the same size and shape

convex: outward curve

factor: number that can be divided into a whole number with no remainder

geodesic dome: domed structure made of bars or segments that form interlocking
polygons

geometry: the study of surfaces, points, lines, and curves

golden a rectangle that, if divided by one line into a square and a resulting
rectangle: rectangle, the resulting rectangle will be similar to the original rectangle

integer: a positive or negative number, including zero, that does not have a
decimal or fraction

Jordan Curve: a simple closed curve, a closed curve being one that does not intersect
itself

magic square: a square arrangement of numbers into rows and columns such that the
sum of each row, column, or diagonal is the same

network: a path that is made with a series of lines and vertices

palindrome: a phrase, word, or number that reads the same forward or backward

parabola: a curve that is made by the intersection of a plane parallel to an element
of a cone

platonic solid: one of five solids, the faces of which are regular polygons

polygon: closed figure formed by three or more line segments; a regular polygon
is one in which all of the line segments are the same and all the angles
are the same

polyhedron: a three-dimensional shape that has faces or sides made of regular
polygons of the same size and shape

prime number: a whole number greater than 1 that has only itself and 1 as factors

probability: the chances of a specific result occurring
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Pythagorean theorem stating that in a right triangle, a2 + b2 = c2, where c is the
Theorem: hypotenuse, the longest side of the triangle opposite the right angle

similarity: in figures, when their corresponding angles are equal and their
corresponding sides are proportional

square root: the square root for a number is that number whose square is the
number

symmetry: a condition in which a form corresponds exactly on opposite sides of a
dividing line

tangent: making contact at a single point or along a line, without intersecting

tangram: a geometric Chinese puzzle in which seven geometric shapes fit within a
square and can be used to make other designs

tessellation: a repeated geometric design that covers a plane with no overlaps or gaps

theorem: a statement for which there is a proof

topology: the study of geometric shapes that are not changed by stretching or
bending

vertex: a point at which the sides of an angle intersect or a point at which three
or more sides intersect in a polyhedron
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A–B
Apollonius circle problem, 108, 128
architecture, 34-36

activities, 35
based on designs from nature, 34
examples of, 34
geodesic dome, 35
Greek columns, types of, 36
relationship to mathematics, 34

arcs, 22-24
activities, 22-24, 116
defined, 22, 130
parabolas and, 22, 44

bibliography, 132
bones in human body (activity), 10-11
Bragdon, Claude (architect), 15, 17

C–D
chance. See probability
circles. See also Jordan curve

activities, 108, 128
finding the center point, 107
squaring the circle, 106

closed curve. See Jordan curve
coins

probability of heads or tails toss, 84-85
puzzle-solving with, 61, 119

concave, defined, 130
congruence, 130

congruent shapes, 43
convex, defined, 130
cube. See hexahedron
cubic numbers, 5

defined, 5
relationship to square numbers, 5
relationship to square roots, 5

curves
Gaussian curve, 87
Jordan curve, 78-80

dodecahedron (twelve faces), 96
pattern for making, 97

E
Egyptian right angle triangle, 100-101
ellipse, 44
Eratosthenes (Greek mathematician), and prime

numbers, 6
creation of a prime number sieve, 6

Escher, M.C. (Dutch artist), 93, 95
Euler, Leonhard (Swiss mathematician), 48

networks, problem of, 48, 49

F
factors, 1-2

answer key, 114
charting a non-prime number, 2
defined, 1, 6, 130
prime factorization, 6

Fibonacci number sequence, 86, 109-111
activities, 110-111
answer key, 129
examples of, 109

four-color map problem, 72-74
activity, 73-74
example, 72
five-color theorem, 74
history of, 72

G
games and puzzles, 50-54, 88-89

Alquerque, 53
Bean Game, 55
coins, puzzle-solving with, 61, 119
creating, 57
funzles, 88-89, 125
Kalah, 56-57
logic games, 50, 58-60
networks, 50-51
Nim (board game), 55
Nine Men’s Morris (board game), 54
numbers puzzles, 88-89, 125
Ovid’s Game (board game), 54
Pong Hau Ki (Chinese tic-tac-toe), 52-53
probability, 50, 57
Sticks, 56
strategy for solving, 50
Sudoku, 112-113
toothpicks, puzzle-solving with, 58-60, 117-119

Gauss, Frederich (mathematician), 87
Gaussian curve, 87-89

activities, 88-89
answer key, 125

genus of a surface, 28
and cuts in the object, 28
defined, 28

geodesic dome, 35, 130
geometric designs

tessellations, 93-94
geometric shapes, 1-2, 18-19

activities, 19-21
answer key, 110
Klein bottle and, 27, 116
origami and, 37-43
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tangrams and, 63
temari balls and, 21
topology and, 28
within quilts, 18

geometry, defined, 130
glossary of terms, 130-131
golden mean, 103
golden rectangle, 103-105

activities, 105
answer key, 127
artists using in their paintings, 103, 105
defined, 103, 130
history of, 103
making a, 104

H–I–J
Hampton Court maze, 81
hexagons, 8-9

activity (finding multi-sided shapes), 9
answer key, 114
characteristics of, 8
defined, 8
relationship to equilateral triangles, 8
relationship to squares, 8

hexahedron (six faces), 96
pattern for making, 98, 126

icosahedron (twenty faces), 96
pattern for making, 97

Incas, numbering system used, 90-91
integer, defined, 130
Jordan, Camille (French mathematician), 78
Jordan curve, 78-80

activity, 79
answer key, 130
mazes can look like, 79, 80, 83

K–L
Kempe, Arthur (mathematician), 72
Knossos coin maize design, 81, 83, 124
knots, 75-77. See also topology

activities, 76-77
defined, 75
examples, 75
how to make, 75
knot theory, 75
trefoil knots, 75, 77

logic games, 50, 58-60

M
magic line, 15-17. See also magic square

activities, 16-17
answer key, 115
defined, 15
examples, 15
how to draw them, 15

magic square, 15-16, 69-71. See also magic line
activities, 16, 71
answer key, 122

Ben Franklin’s magic square, 115
defined, 15, 130
examples, 15
lo-shu, 69
stairstep method, 69-70

map, four color.  See four-color map problem
mazes, 81-83

activities, 81-83
answer key, 123-124
designing, 82
history of, 81
Jordan curves and, 80, 83

Möbius, August (astronomer), 25, 72
topology, interest in, 25

Möbius strip, 116
multiplication, 2, 66-68

activities, 67-68
ancient Egyptian, 66-68
answer key, 122
examples of, 66
method used, 66
relationship to factors, 2

N
networks, 47-51. See also traversible networks

activities, 48-49, 50-51
answer key, 117
defined, 47, 130
examples of, 47-48
insights of Leonhard Euler, 48, 49
Konigsberg Bridge problem, 49, 117
vertices and, 48

non-prime numbers, 2. See also prime numbers
charting, 2

numbering systems, ancient
grooves and pebbles, 92
Hindu-Arabic number system, 109
Quipus, 90-91, 125
Roman numeral system, 109

O
octahedron (eight faces), 96

pattern for making, 98, 126
odd numbers, 4, 114

relationship to square numbers, 4
optical illusions, 31-33

activities, 32-33
convergence/divergence illusion, 32
examples of, 31
twisted cord effect, 31
why they happen, 31
Zollner’s illusion, 31-32

origami, 37-44
activities, 38-44
buzzer (design), 42-44
characteristics of, 37
determining mathematical principals in, 43
history of, 37
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making a three-dimensional object, 44
old upright piano (design), 38-39
square as the basis for making shapes, 37
water bird (design), 40-41

P
palindromes, 45-46

activities, 46
defined, 45, 130
examples of, 45

paper bands, 25-27
activities, 25-27
Klein bottle, the, 27

parabola, 22, 44, 130
Parthenon (building), golden rectangle and, 103,

105, 127
Pascal’s triangle

answer key, 124
and probability, 84-86

pentagons, 44, 94
Plato (Greek philosopher), and regular solids, 96
platonic solids, 96, 130

activity, 99
polygon, 120, 130

and the Jordan curve, 80
regular polygon, 96

polyhedron, 96, 130
making a pattern for, 99

prime number sieve, 6-7
activities, 7
created by Eratosthenes, 6
example of, 7
how to make, 6

prime numbers, 1-2. See also  non-prime numbers
answer key, 114
characteristics of, 2
defined, 1, 6, 130
examples of, 1-2
prime factorization, 2

probability, 50, 84-86
activity, 50, 57, 84-85
answer key, 124
defined, 130
Pascal’s triangle and, 84-86

proportion, 11
and ratios, 11
defined, 11

puzzles. See games and puzzles
Pythagoras (Greek philosopher and mathematician),

100
Egyptian right angle triangle, 100-101

Pythagorean theorem, 100-102, 131
proving, 101-102

Q
quadrilateral, tessellate a plane and, 94
quilt square, 18-20. See also quilting

eight-point star, 18

examples of patterns, 18, 20
shapes within, 18, 20

quilting, 18-20. See also quilt square
and geometric shapes, 18

Quipus (ancient numbering system), 90-91, 125

R
ratios, 10-11

activities, 11
answer key, 114
colon and, 11
division problem, 10
examples of, 10
fractions and, 10
means of expression, 10
proportions and, 11

rectangles, 1
golden rectangles and, 103-105, 127
prime numbers and, 1

reflective symmetry, 12-13
defined, 12
example of, 12

regular solids, 96-99
answer key, 126
defined, 96
patterns to create, 98

rotational symmetry, 12, 115
characteristics of, 12
examples of, 12

S
similarity, defined, 131
snowflakes (hexagonal in design), 8
square numbers, relationship to other numbers, 4-5

answer key, 114
cubic numbers, 5
odd numbers, 4
square roots, 5
triangle numbers, 4

square roots, relationship to other numbers, 5
cubic numbers, 5
defined, 131
square numbers, 5

squares, making an Escher-style tessellation, 95
squaring the circle, 106
Sudoku, 112-113

answer key, 129
examples of puzzles, 112-113
using shapes instead of numbers, 113
Wordoku (variation), 112

symmetry, 12-14. See also magic square
activities, 14
answer key, 115
defined, 131
examples of, 12
reflective symmetry, 12, 115
rotational symmetry, 12, 115
translational symmetry, 13
using arcs to create, 24
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T
tangrams (Chinese puzzle), 62-65

activities, 64-65
answer key, 120-122
defined, 62, 131
examples, 63

temari balls (Japanese craft), 21
characteristics of, 21
how to make, 21

tessellations, 93-94
defined, 131
illustrations of, 93
tessellate a plane, 93-94, 95, 126

tetrahedron (four faces), 96
pattern for making, 98, 126

theorems (mathematical rules), 74, 100-102, 131
toothpick puzzles, 58-60

activities, 60
answer key, 117-119
examples of, 58-59

topology. See also genus of a surface
activities, 30
answer key, 123

August Möbius and, 25
defined, 75, 131
examples of, 29
knot theory and, 75
what topologists do, 26, 28-29

translational symmetry, 13
characteristics of, 13
example of, 13

traversible networks, 47-49, 51, 82, 117, 130. See
also networks
activities, 48-49

triangles, 3
Egyptian right angle triangle, 100-102
making an Escher-style tessellation, 95
pattern in how they grow, 3, 86
Pythagorean Theorem, proving, 101-102
relationship to square numbers, 4
using equilateral to make a design, 23

triangular numbers, answer key, 114

V–Z
vertex, defined, 131
Zollner’s illusion (optical illusion), 31-32




